Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 32, pp 33532–33540 | Cite as

Thorium content in soil, water and sediment samples and fluvial sediment-associated transport in a catchment system with a semiarid-coastal interface, Brazil

  • Rennan Cabral Nascimento
  • Yuri Jacques Agra Bezerra da SilvaEmail author
  • Clístenes Williams Araújo do Nascimento
  • Ygor Jacques Agra Bezerra da Silva
  • Rayanna Jacques Agra Bezerra da Silva
  • Adrian L. Collins
Research Article
  • 202 Downloads

Abstract

Thorium (Th) is one of the main sources of natural radiation to ecosystems. However, data regarding Th concentrations in rocks, soil, water and sediments are currently scarce. Accordingly, this study aimed to establish background concentrations and quality reference values (QRVs) for Th in the environmentally impacted Ipojuca River catchment in Brazil, where the weathering of granites releases Th into the environment. Additionally, the study aimed to calculate Th fluxes in water, and both bed and suspended sediment. The mean Th concentration in the study catchment soils was 28.6 mg kg−1. The QRV for Th was estimated to be 21 mg kg−1 and 86.3 Bq kg−1. Bed and suspended sediment–associated concentrations ranged from 2.8 to 32.9 mg kg−1. Suspended sediment–associated discharge (3.42 t year−1) accounted for more than 99% of the total Th flux, while the dissolved phase transport was negligible in comparison. At the downstream cross section in the study catchment, suspended sediment samples exhibited Th concentrations similar to those observed in rivers impacted by mining activities. The discharge of sediment to the ocean from the study area is mainly triggered by soil erosion processes in the hotspot region (middle-inferior course). It is essential to identify Th hotspots before establishing environmental policies regarding human health and environmental protection.

Keywords

Quality reference values Environmental quality Watershed Th hotspot Sediment-associated transport Soil erosion processes 

Notes

Acknowledgements

We would like to thank the editor and anonymous reviewers for their insightful and constructive comments that greatly contributed to the improvement of the original manuscript.

Funding information

This research was supported by the Brazilian Government, MEC/MCTI/CAPES/CNPq/FAPs EDITAL No. 61/2011-Science Without Borders Program, project number (402603/2012-5), and by FACEPE process number (IBPG-0889-5.01/11). ALC was funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC) via grant award BBS/E/C/000I0330 – Soil to Nutrition.

References

  1. Agência Condepe/Fidem (2005) Rio Ipojuca. (Série Bacias Hidrográficas de Pernambuco, 1). http://www.condepefidem.pe.gov.br/c/document_library/get_file?p_l_id=78673&folderId=141869&name=DLFE-12005.pdf. Accessed 16 Jul 2017
  2. Aggarwal SK (2016) A review on the mass spectrometric analysis of thorium. Radiochim Acta 104(7):445–455CrossRefGoogle Scholar
  3. Alloway BJ (2013) Heavy metals in soils - trace metals and metalloids in soils and their bioavailability, Third Edition. Springer, DordrechtGoogle Scholar
  4. Antunes IMHR, Neiva AMR, Albuquerque MTD, Carvalho PCS, Santos ACT, Cunha PP (2018) Potential toxic elements in stream sediments, soils and waters in an abandoned radium mine (central Portugal). Environ Geochem Hlth 40(1):521–542CrossRefGoogle Scholar
  5. Aubert D, Probst A, Stille P (2004) Distribution and origin of major and trace elements (particularly REE, U and Th) into labile and residual phases in an acid soil profile (Vosges Mountains, France). Appl Geochem 19(6):899–916CrossRefGoogle Scholar
  6. Bangotra P, Mehra R, Jakhu R, Kaur K, Pandit P, Kanse S (2018) Estimation of 222Rn exhalation rate and assessment of radiological risk from activity concentration of 226Ra, 232Th and 40K. J Geochem Explor 184:304–310CrossRefGoogle Scholar
  7. BBodSchV (1999) Bundes-bodenschutz- und altlastenverordnung (German federal soil protection and contaminated sites ordinance); Action, Trigger and precaution Values - Anexo 2, 12. Bundesgesetzblatt, I 36:1554–1582Google Scholar
  8. Braun JJ, Riotte J, Battacharya S, Violette A, Oliva P, Prunier J, Maréchal JC, Ruiz L, Audry S, Subramanian S (2018) REY-Th-U dynamics in the critical zone: combined influence of reactive bedrock accessory minerals, authigenic phases, and hydrological sorting (Mule Hole Watershed, South India). Geochem Geophy Geosy 19(5):1611–1635CrossRefGoogle Scholar
  9. Breiter K, Lamarão CN, Borges RMK, Dall’Agnol R (2014) Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites. Lithos 192:208–225CrossRefGoogle Scholar
  10. Cinelli G, Tondeur F, Dehandschutter B (2018) Mapping potassium and thorium concentrations in Belgian soils. J Environ Radioactiv 184:127–139CrossRefGoogle Scholar
  11. Conceição FT, Bonotto DM, Jiménez-Rueda JR, Roveda JAF (2009) Distribution of 226Ra, 232Th and 40K in soils and sugar cane crops at Corumbataí river basin, São Paulo State, Brazil. Appl Radiat Isotopes 67(6):1114–1120CrossRefGoogle Scholar
  12. Conselho Nacional do Meio Ambiente - CONAMA. Resolução no. 420, de 28 de dezembro de 2009. Disponível em: http://www2.mma.gov.br/port/conama/res/res09/res42009.pdf. Acessado em 13 de julho de 2018
  13. Coynel A, Schäfer J, Blanc G, Bossy C (2007) Scenario of particulate trace metal and metalloid transport during a major flood event inferred from transient geochemical signals. Appl Geochem 22(4):821–836CrossRefGoogle Scholar
  14. Danyłec K, Mazur J, Kozak K, Grządziel D (2018) Determination of the thoron emanation coefficient using a powder sandwich technique. J Environ Radioactiv 195:109–113CrossRefGoogle Scholar
  15. Dragović S, Janković-Mandić L, Dragović R, Đorđević M, Đokić M, Kovačević J (2014) Lithogenic radionuclides in surface soils of Serbia: spatial distribution and relation to geological formations. J Geochem Explor 142:4–10CrossRefGoogle Scholar
  16. Edwards TK, Glysson GD, Guy HP, Norman VW (1999) Field methods for measurement of fluvial sediment (p. 89). US Geological Survey, DenverGoogle Scholar
  17. Fernandes HM, Simoes Filho FFL, Perez V, Franklin MR, Gomiero LA (2006) Radioecological characterization of a uranium mining site located in a semi-arid region in Brazil. J Environ Radioactiv 88(2):140–157CrossRefGoogle Scholar
  18. Ferreira A, Daraktchieva Z, Beamish D, Kirkwood C, Lister TR, Cave M, Wragg J, Lee K (2018) Indoor radon measurements in south west England explained by topsoil and stream sediment geochemistry, airborne gamma-ray spectroscopy and geology. J Environ Radioactiv 181:152–171CrossRefGoogle Scholar
  19. Gaillardet J, Viers J, Dupré B (2003) Trace elements in river waters. Treatise on geochemistry 5:605Google Scholar
  20. Gray JR (2005) Sediment data collection techniques. U.S. Geological Survey Training Course, Castle RockGoogle Scholar
  21. Guimarães SNP, Hamza VM, da Silva JJ (2013) Airborne geophysical surveys in the north-central region of Goias (Brazil): implications for radiometric characterization of tropical soils. J Environ Radioactiv 116:10–18CrossRefGoogle Scholar
  22. Heckmann T, Cavalli M, Cerdan O, Foerster S, Javaux M, Lode E, Smetanová A, Vericat D, Brardinoni F (2018) Indices of sediment connectivity: opportunities, challenges and limitations. Earth-Sci Rev 187:77–108CrossRefGoogle Scholar
  23. Holden NE (1990) Total half-lives for selected nuclides. Pure Appl Chem 62(5):941–958CrossRefGoogle Scholar
  24. Horowitz AJ (2003) An evaluation of sediment rating curves for estimating suspended sediment concentrations for subsequent flux calculations. Hydrol Process 17:3387–3409CrossRefGoogle Scholar
  25. Horowitz AJ, Elrick KA, Smith JJ (2001) Estimating suspended sediment and trace element fluxes in large river basins: methodological considerations as applied to the NASQAN programme. Hydrol Process 15:1107–1132CrossRefGoogle Scholar
  26. Hussain R, Luo K, Chao Z, Xiaofeng Z (2018) Trace elements concentration and distributions in coal and coal mining wastes and their environmental and health impacts in Shaanxi, China. Environ Sci Pollut R 25(20):19566–19584CrossRefGoogle Scholar
  27. Kienast SS, Winckler G, Lippold J, Albani S, Mahowald NM (2016) Tracing dust input to the global ocean using thorium isotopes in marine sediments: ThoroMap. Glob Biogeochem Cycles 30(10):1526–1541CrossRefGoogle Scholar
  28. Kirkland CL, Smithies RH, Taylor RJM, Evans N, McDonald B (2015) Zircon Th/U ratios in magmatic environs. Lithos 212:397–414CrossRefGoogle Scholar
  29. Kritsananuwat R, Sahoo SK, Fukushi M, Pangza K, Chanyotha S (2015) Radiological risk assessment of 238U, 232Th and 40K in Thailand coastal sediments at selected areas proposed for nuclear power plant sites. J Radioanal Nucl Ch 303(1):325–334CrossRefGoogle Scholar
  30. Lima Barros AM, do Carmo Sobral M, Gunkel G (2013) Modelling of point and diffuse pollution: application of the Moneris model in the Ipojuca river basin, Pernambuco State, Brazil. Water Sci Technol 68(2):357–365CrossRefGoogle Scholar
  31. Malczewski D, Teper L, Dorda J (2004) Assessment of natural and anthropogenic radioactivity levels in rocks and soils in the environs of Swieradow Zdroj in Sudetes, Poland, by in situ gamma-ray spectrometry. J Environ Radioactiv 73(3):233–245CrossRefGoogle Scholar
  32. Marques JJ, Schulze DG, Curi N, Mertzman SA (2004) Trace element geochemistry in Brazilian Cerrado soils. Geoderma 121(1–2):31–43CrossRefGoogle Scholar
  33. Mazzilli B, Palmiro V, Saueia C, Nisti MB (2000) Radiochemical characterization of Brazilian phosphogypsum. J Environ Radioactiv 49(1):113–122CrossRefGoogle Scholar
  34. Momčilović M, Kovačević J, Tanić M, Đorđević M, Bačić G, Dragović S (2013) Distribution of natural radionuclides in surface soils in the vicinity of abandoned uranium mines in Serbia. Environ Monit Assess 185(2):1319–1329CrossRefGoogle Scholar
  35. Muniz K, Neto BDB, Macêdo SJ, Filho WCP (2005) Hydrological impact of the port complex of Suape on the Ipojuca River (Pernambuco-Brazil). J Coastal Res 21(5):909–914CrossRefGoogle Scholar
  36. Murphy CP (1986) Thin section preparation of soils and sediments. Academic Publishing, Berkhanmsterd (145 pp)Google Scholar
  37. Nascimento MR, Mozeto AA (2008) Reference values for metals and metalloids concentrations in bottom sediments of Tiete River basin, Southeast of Brazil. Soil Sediment Contam 17(3):269–278CrossRefGoogle Scholar
  38. National Institute of Standards and Technology – NIST (2002) Standard Reference Materials –SRM 2709, 2710 and 2711 Addendum Issue Date: 18 JanuaryGoogle Scholar
  39. Négrel P, De Vivo B, Reimann C, Ladenberger A, Cicchella D, Albanese S, Birke M, De Vos W, Dinelli E, Lima A, O’Connor PJ, Salpeteur I, Tarvainen T (2018) U-Th signatures of agricultural soil at the European continental scale (GEMAS): distribution, weathering patterns and processes controlling their concentrations. Sci Total Environ 622:1277–1293CrossRefGoogle Scholar
  40. Neiva AMR, Carvalho PCS, Antunes IMHR, Silva MMVG, Santos ACT, Pinto MC, Cunha PP (2014) Contaminated water, stream sediments and soils close to the abandoned Pinhal do Souto uranium mine, central Portugal. J Geochem Explor 136:102–117CrossRefGoogle Scholar
  41. Neiva AMR, Antunes IMHR, Carvalho PCS, Santos ACT (2016) Uranium and arsenic contamination in the former Mondego Sul uranium mine area, Central Portugal. J Geochem Explor 162:1–15CrossRefGoogle Scholar
  42. Oyebamiji A, Odebunmi A, Ruizhong H, Rasool A (2018) Assessment of trace metals contamination in stream sediments and soils in Abuja leather mining, southwestern Nigeria. Acta Geochim 37(4):592–613CrossRefGoogle Scholar
  43. Peixoto CM, Fernandes PRM, Rodrigues PCH, Feliciano VMD (2016) Distribuição das Concentrações de Atividade de 238U e 232Th em Amostras de Solo do Estado de Minas Gerais. Brazilian J Radiat Sci 4(2)Google Scholar
  44. Pokrovsky OS, Viers J, Shirokova LS, Shevchenko VP, Filipov AS, Dupré B (2010) Dissolved, suspended, and colloidal fluxes of organic carbon, major and trace elements in the Severnaya Dvina River and its tributary. Chem Geo 273(1-2):136–149CrossRefGoogle Scholar
  45. Ribeiro FC, Lauria DDC, do Rio MA, da Cunha FG, de Oliveira Sousa W, Lima EDAM, Franzen M (2017) Mapping soil radioactivity in the Fernando de Noronha archipelago, Brazil. Radioanal Nucl Ch 311(1):577–587CrossRefGoogle Scholar
  46. Rodrigues MF, Reichert JM, Burrow RA, Flores EMM, Minella JPG, Rodrigues LA, Oliveira JSS, Cavalcante RBL (2018) Coarse and fine sediment sources in nested watersheds with eucalyptus forest. Land Degrad Dev 29(8):2237–2253CrossRefGoogle Scholar
  47. Sanusi MSM, Ramli AT, Basri NA, Heryanshah A, Said MN, Lee MH, Wagiran H, Saleh MA (2017) Thorium distribution in the soils of Peninsular Malaysia and its implications for Th resource estimation. Ore Geol Rev 80:522–535CrossRefGoogle Scholar
  48. Saueia CHR, Mazzilli BP (2006) Distribution of natural radionuclides in the production and use of phosphate fertilizers in Brazil. J Environ Radioactiv 89(3):229–239CrossRefGoogle Scholar
  49. Servitzoglou NG, Stoulos S, Katsantonis D, Papageorgiou M, Siountas A (2018) Natural radioactivity studies of phosphate fertilizers applied on Greek farm soils used for wheat cultivation. Radiat Prot Dosim 181(3):190–198CrossRefGoogle Scholar
  50. Silva YJAB, Cantalice JRB, Singh VP, do Nascimento CWA, Piscoya VC, Guerra SM (2015a) Trace element fluxes in sediments of an environmentally impacted river from a coastal zone of Brazil. Environ Sci Pollut R 22(19):14755–14766CrossRefGoogle Scholar
  51. Silva YJAB, Nascimento CWA, Cantalice JRB, Silva YJAB, Cruz CMCA (2015b) Watershed-scale assessment of background concentrations and guidance values for heavy metals in soils from a semiarid and coastal zone of Brazil. Environ Monit Assess 187(9):558CrossRefGoogle Scholar
  52. Silva YJAB, Cantalice JRB, Nascimento CAN, Singh VP, Silva YJAB, Silva CMCAC, Silva MO, Guerra SMS (2017) Bedload as an indicator of heavy metal contamination in a Brazilian anthropized watershed. Catena 153:106–113CrossRefGoogle Scholar
  53. Silva YJAB, do Nascimento CWA, da Silva YJAB, Amorim FF, Cantalice JRB, Singh VP, Collins AL (2018) Bed and suspended sediment-associated rare earth element concentrations and fluxes in a polluted Brazilian river system. Environ Sci Pollut R 25(34):34426–34437CrossRefGoogle Scholar
  54. Taboada T, Cortizas AM, García C, García-Rodeja E (2006) Uranium and thorium in weathering and pedogenetic profiles developed on granitic rocks from NW Spain. Sci Total Environ 356(1-3):192–206CrossRefGoogle Scholar
  55. UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation (2000) Sources and effects of ionizing radiation, Vol.I: Sources, Annex A. United Nations, New YorkGoogle Scholar
  56. U.S Environmental Protection Agency - USEPA (1998) Method 3051A: microwave assisted acid digestion of sediments, sludges, soils, and oils. WashingtonGoogle Scholar
  57. USGS (2005) Techniques of water resources investigation of the United States Geological Survey. WashingtonGoogle Scholar
  58. Wohl E, Brierley G, Cadol D, Coulthard TJ, Covino T, Fryirs KA, Grant G, Hilton RG, Lane SN, Magilligan FJ, Meitzen KM, Passalacqua P, Poeppl RE, Rathburn SL, Sklar LS (2018) Connectivity as an emergent property of geomorphic systems. Earth Surf Proc Land 44(1):4–26CrossRefGoogle Scholar
  59. Xiao H, Long C, Tian X, Chen H (2016) Effect of thorium addition on the thermophysical properties of uranium dioxide: atomistic simulations. Mater Design 96:335–340CrossRefGoogle Scholar
  60. Yan X, Luo X (2015) Radionuclides distribution, properties, and microbial diversity of soils in uranium mill tailings from southeastern China. J Environ Radioactiv 139:85–90CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Rennan Cabral Nascimento
    • 1
  • Yuri Jacques Agra Bezerra da Silva
    • 2
    Email author
  • Clístenes Williams Araújo do Nascimento
    • 1
  • Ygor Jacques Agra Bezerra da Silva
    • 1
  • Rayanna Jacques Agra Bezerra da Silva
    • 1
  • Adrian L. Collins
    • 3
  1. 1.Agronomy DepartmentFederal Rural University of Pernambuco (UFRPE)RecifeBrazil
  2. 2.Agronomy DepartmentFederal University of Piaui (UFPI)Bom JesusBrazil
  3. 3.Sustainable Agriculture SciencesRothamsted ResearchOkehamptonUK

Personalised recommendations