Enhancement of biofuel production by microalgae using cement flue gas as substrate

  • Senthil Nagappan
  • Pei-Chien Tsai
  • Saravanan Devendran
  • Vardhini Alagarsamy
  • Vinoth Kumar PonnusamyEmail author
Resource Recovery from Wastewater, Solid Waste and Waste Gas: Engineering and Management Aspects


The cement industry generates a substantial amount of gaseous pollutants that cannot be treated efficiently and economically using standard techniques. Microalgae, a promising bioremediation and biodegradation agent used as feedstock for biofuel production, can be used for the biotreatment of cement flue gas. In specific, components of cement flue gas such as carbon dioxide, nitrogen, and sulfur oxides are shown to serve as nutrients for microalgae. Microalgae also have the capacity to sequestrate heavy metals present in cement kiln dust, adding further benefits. This work provides an extensive overview of multiple approaches taken in the inclusion of microalgae biofuel production in the cement sector. In addition, factors influencing the production of microalgal biomass are also described in such an integrated plant. In addition, process limitations such as the adverse impact of flue gas on medium pH, exhaust gas toxicity, and efficient delivery of carbon dioxide to media are also discussed. Finally, the article concludes by proposing the future potential for incorporating the microalgae biofuel plant into the cement sector.


Microalgae Biodegradation Carbon dioxide mitigation Carbon capture Nitrogen oxides Sulfur Oxides Cement industry 


Funding information

This study received financial support from the Ministry of Science and Technology-Taiwan Research Grant (107-2113-M-037-007-MY2); the Research Center for Environmental Medicine, Kaohsiung Medical University, Taiwan; “The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project” by the Ministry of Education (MOE) in Taiwan; the NSYSU-KMU collaboration research project (NSYSU-KMU 107-I004) in Taiwan; and the Sri Venkateswara College of Engineering–Sriperumpudur, India.


  1. Aslam A, Thomas-Hall SR, Mughal TA, Schenk PM (2017) Selection and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas. Bioresour Technol 233:271–283CrossRefGoogle Scholar
  2. Aslam A, Thomas-Hall SR, Manzoor M, Jabeen F, Iqbal M, Uz Zaman Q, Schenk PM, Tahir MA (2018) Mixed microalgae consortia growth under higher concentration of CO2 from unfiltered coal fired flue gas: fatty acid profiling and biodiesel production. J Photochem Photobiol B 179:126–133CrossRefGoogle Scholar
  3. Banerjee C, Singh PK, Shukla P (2016) Microalgal bioengineering for sustainable energy development: recent transgenesis and metabolic engineering strategies. Biotechnol J 11:303–314CrossRefGoogle Scholar
  4. Bassalo MC, Liu R, Gill RT (2016) Directed evolution and synthetic biology applications to microbial systems. Curr Opin Biotechnol 39:126–133CrossRefGoogle Scholar
  5. Bhakta JN, Lahiri S, Pittman JK, Jana BB (2015) Carbon dioxide sequestration in wastewater by a consortium of elevated carbon dioxide-tolerant microalgae. J CO2 Util 10:105–112CrossRefGoogle Scholar
  6. Boningari T, Smirniotis PG (2016) Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement. Curr Opin Chem Eng 13:133–141CrossRefGoogle Scholar
  7. Borkenstein CG, Knoblechner J, Frühwirth H, Schagerl M (2011) Cultivation of Chlorella emersonii with flue gas derived from a cement plant. J Appl Phycol 23:131–135CrossRefGoogle Scholar
  8. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577CrossRefGoogle Scholar
  9. Brilman W, Alba LG, Veneman R (2013) Capturing atmospheric CO2 using supported amine sorbents for microalgae cultivation. Biomass Bioenergy 53:39–47CrossRefGoogle Scholar
  10. Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992CrossRefGoogle Scholar
  11. Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506CrossRefGoogle Scholar
  12. Chen J-C, Wey M-Y, Ou W-Y (1999) Capture of heavy metals by sorbents in incineration flue gas. Sci Total Environ 228:67–77CrossRefGoogle Scholar
  13. Chen C, Habert G, Bouzidi Y, Jullien A (2010) Environmental impact of cement production: detail of the different processes and cement plant variability evaluation. J Clean Prod 18:478–485CrossRefGoogle Scholar
  14. Chen H-W, Yang T-S, Chen M-J, Chang Y-C, Lin C-Y, Eugene I, Wang C, Ho C-L, Huang K-M, Yu C-C (2012) Application of power plant flue gas in a photobioreactor to grow Spirulina algae, and a bioactivity analysis of the algal water-soluble polysaccharides. Bioresour Technol 120:256–263CrossRefGoogle Scholar
  15. Chen C-Y, Zhao X-Q, Yen H-W, Ho S-H, Cheng C-L, Lee D-J, Bai F-W, Chang J-S (2013) Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1–10CrossRefGoogle Scholar
  16. Cheng D, Li X, Yuan Y, Yang C, Tang T, Zhao Q, Sun Y (2019) Adaptive evolution and carbon dioxide fixation of Chlorella sp. in simulated flue gas. Sci Total Environ 650:2931–2938CrossRefGoogle Scholar
  17. Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee D-J, Chang J-S (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229:53–62CrossRefGoogle Scholar
  18. Chi Z, O’Fallon JV, Chen S (2011) Bicarbonate produced from carbon capture for algae culture. Trends Biotechnol 29:537–541CrossRefGoogle Scholar
  19. Chi Z, Xie Y, Elloy F, Zheng Y, Hu Y, Chen S (2013) Bicarbonate-based integrated carbon capture and algae production system with alkalihalophilic cyanobacterium. Bioresour Technol 133:513–521CrossRefGoogle Scholar
  20. Chiu S-Y, Kao C-Y, Chen C-H, Kuan T-C, Ong S-C, Lin C-S (2008) Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol 99:3389–3396CrossRefGoogle Scholar
  21. Chiu S-Y, Kao C-Y, Tsai M-T, Ong S-C, Chen C-H, Lin C-S (2009a) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838CrossRefGoogle Scholar
  22. Chiu SY, Tsai MT, Kao CY, Ong SC, Lin CS (2009b) The air-lift photobioreactors with flow patterning for high-density cultures of microalgae and carbon dioxide removal. Eng Life Sci 9:254–260CrossRefGoogle Scholar
  23. Chiu S-Y, Kao C-Y, Huang T-T, Lin C-J, Ong S-C, Chen C-D, Chang J-S, Lin C-S (2011) Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresour Technol 102:9135–9142CrossRefGoogle Scholar
  24. Choi W, Kim G, Lee K (2012) Influence of the CO2 absorbent monoethanolamine on growth and carbon fixation by the green alga Scenedesmus sp. Bioresour Technol 120:295–299CrossRefGoogle Scholar
  25. Choi YY, Hong ME, Jin ES, Woo HM, Sim SJ (2018) Improvement in modular scalability of polymeric thin-film photobioreactor for autotrophic culturing of Haematococcus pluvialis using industrial flue gas. Bioresour Technol 249:519–526CrossRefGoogle Scholar
  26. Corcoran AA, Boeing WJ (2012) Biodiversity increases the productivity and stability of phytoplankton communities. PLoS One 7:e49397CrossRefGoogle Scholar
  27. Cuellar-Bermudez SP, Garcia-Perez JS, Rittmann BE, Parra-Saldivar R (2015) Photosynthetic bioenergy utilizing CO2: an approach on flue gases utilization for third generation biofuels. J Clean Prod 98:53–65CrossRefGoogle Scholar
  28. Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531CrossRefGoogle Scholar
  29. De Bhowmick G, Koduru L, Sen R (2015) Metabolic pathway engineering towards enhancing microalgal lipid biosynthesis for biofuel application—a review. Renew Sust Energ Rev 50:1239–1253CrossRefGoogle Scholar
  30. De Godos I, Mendoza J, Acién F, Molina E, Banks C, Heaven S, Rogalla F (2014) Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresour Technol 153:307–314CrossRefGoogle Scholar
  31. De Morais MG, Costa JAV (2007) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445CrossRefGoogle Scholar
  32. Dhankar RS, Srinivasan R, Das D (2017) Cement production, carbon dioxide emission, and its impact on environment in India. Clim Chang 26Google Scholar
  33. Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412CrossRefGoogle Scholar
  34. Douskova I, Doucha J, Livansky K, Machat J, Novak P, Umysova D, Zachleder V, Vitova M (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82:179–185CrossRefGoogle Scholar
  35. Du K, Wen X, Wang Z, Liang F, Luo L, Peng X, Xu Y, Geng Y, Li Y (2019) Integrated lipid production, CO 2 fixation, and removal of SO 2 and NO from simulated flue gas by oleaginous Chlorella pyrenoidosa. Environ Sci Pollut Res 26:16195–16209CrossRefGoogle Scholar
  36. Duarte JH, Fanka LS, Costa JAV (2016) Utilization of simulated flue gas containing CO2, SO2, NO and ash for Chlorella fusca cultivation. Bioresour Technol 214:159–165CrossRefGoogle Scholar
  37. Dubinsky Z, Stambler N (2009) Photoacclimation processes in phytoplankton: mechanisms, consequences, and applications. Aquat Microb Ecol 56:163–176CrossRefGoogle Scholar
  38. Endres CH, Roth A, Brück TB (2018) Modeling microalgae productivity in industrial-scale vertical flat panel photobioreactors. Environ Sci Technol 52:5490–5498CrossRefGoogle Scholar
  39. Fernández FGA, González-López C, Sevilla JF, Grima EM (2012) Conversion of CO 2 into biomass by microalgae: how realistic a contribution may it be to significant CO 2 removal? Appl Microbiol Biotechnol 96:577–586CrossRefGoogle Scholar
  40. Fox JW (2005) Interpreting the ‘selection effect’of biodiversity on ecosystem function. Ecol Lett 8:846–856CrossRefGoogle Scholar
  41. Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1991) Enhanced growth of the red algaPorphyra yezoensis Ueda in high CO 2 concentrations. J Appl Phycol 3:355–362CrossRefGoogle Scholar
  42. González-Fernández C, Mahdy A, Ballesteros I, Ballesteros M (2016) Impact of temperature and photoperiod on anaerobic biodegradability of microalgae grown in urban wastewater. Int Biodeterior Biodegrad 106:16–23CrossRefGoogle Scholar
  43. Grierson S, Strezov V, Bengtsson J (2013) Life cycle assessment of a microalgae biomass cultivation, bio-oil extraction and pyrolysis processing regime. Algal Res 2:299–311CrossRefGoogle Scholar
  44. Griffiths MJ, Harrison ST (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507CrossRefGoogle Scholar
  45. Grobbelaar JU (1994) Turbulence in mass algal cultures and the role of light/dark fluctuations. J Appl Phycol 6:331–335CrossRefGoogle Scholar
  46. Gross K, Cardinale BJ (2007) Does species richness drive community production or vice versa? Reconciling historical and contemporary paradigms in competitive communities. Am Nat 170:207–220CrossRefGoogle Scholar
  47. Hamid SHA, Lananan F, Din WNS, Lam SS, Khatoon H, Endut A, Jusoh A (2014) Harvesting microalgae, Chlorella sp. by bio-flocculation of Moringa oleifera seed derivatives from aquaculture wastewater phytoremediation. Int Biodeterior Biodegrad 95:270–275CrossRefGoogle Scholar
  48. Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I (1992) Tolerance of microalgae to high CO2 and high temperature. Phytochemistry 31:3345–3348CrossRefGoogle Scholar
  49. He L, Subramanian VR, Tang YJ (2012) Experimental analysis and model-based optimization of microalgae growth in photo-bioreactors using flue gas. Biomass Bioenergy 41:131–138CrossRefGoogle Scholar
  50. Hewes CD (2015) Transitional-state growth kinetics of Thalassiosira pseudonana (Bacillariophyceae) during self-shading in batch culture under light-limiting, nutrient-replete conditions: improving biomass for productivity (culture quality). Algal Res 12:550–560CrossRefGoogle Scholar
  51. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639CrossRefGoogle Scholar
  52. Huntzinger DN, Eatmon TD (2009) A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J Clean Prod 17:668–675CrossRefGoogle Scholar
  53. Ibuot A, Dean AP, McIntosh OA, Pittman JK (2017) Metal bioremediation by CrMTP4 over-expressing Chlamydomonas reinhardtii in comparison to natural wastewater-tolerant microalgae strains. Algal Res 24:89–96CrossRefGoogle Scholar
  54. Ishida Y, Hiragushi N, Kitaguchi H, Mitsutani A, Nagai S, Yoshimura M (2000) A highly CO2-tolerant diatom, Thalassiosira weissflogii H1, enriched from coastal sea, and its fatty acid composition. Fish Sci 66:655–659CrossRefGoogle Scholar
  55. Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano-and micro-scaled oxide particles. Environ Pollut 157:1619–1625CrossRefGoogle Scholar
  56. Jiang Y, Peng X, Zhang W, Liu T (2012) Enhancement of acid resistance of Scenedesmus dimorphus by acid adaptation. J Appl Phycol 24:1637–1641CrossRefGoogle Scholar
  57. Jiang Y, Zhang W, Wang J, Chen Y, Shen S, Liu T (2013) Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresour Technol 128:359–364CrossRefGoogle Scholar
  58. Jin Y, Veiga MC, Kennes C (2005) Bioprocesses for the removal of nitrogen oxides from polluted air. J Chem Technol Biotechnol 80:483–494CrossRefGoogle Scholar
  59. Jin H-F, Santiago DE, Park J, Lee K (2008) Enhancement of nitric oxide solubility using Fe (II) EDTA and its removal by green algae Scenedesmus sp. Biotechnol Bioprocess Eng 13:48–52CrossRefGoogle Scholar
  60. Judd SJ, Al Momani F, Znad H, Al Ketife A (2017) The cost benefit of algal technology for combined CO2 mitigation and nutrient abatement. Renew Sust Energ Rev 71:379–387CrossRefGoogle Scholar
  61. Kanniche M, Gros-Bonnivard R, Jaud P, Valle-Marcos J, Amann J-M, Bouallou C (2010) Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl Therm Eng 30:53–62CrossRefGoogle Scholar
  62. Kao C-Y, Chen T-Y, Chang Y-B, Chiu T-W, Lin H-Y, Chen C-D, Chang J-S, Lin C-S (2014) Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresour Technol 166:485–493CrossRefGoogle Scholar
  63. Kassim MA, Meng TK (2017) Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. Sci Total Environ 584:1121–1129CrossRefGoogle Scholar
  64. Keffer J, Kleinheinz G (2002) Use of Chlorella vulgaris for CO 2 mitigation in a photobioreactor. J Ind Microbiol Biotechnol 29:275–280CrossRefGoogle Scholar
  65. Khataee A, Vafaei F, Jannatkhah M (2013) Biosorption of three textile dyes from contaminated water by filamentous green algal Spirogyra sp.: Kinetic, isotherm and thermodynamic studies. Int Biodeterior Biodegrad 83:33–40CrossRefGoogle Scholar
  66. Kim HW, Marcus AK, Shin JH, Rittmann BE (2011) Advanced control for photoautotrophic growth and CO2-utilization efficiency using a membrane carbonation photobioreactor (MCPBR). Environ Sci Technol 45:5032–5038CrossRefGoogle Scholar
  67. Kim G, Choi W, Lee C-H, Lee K (2013) Enhancement of dissolved inorganic carbon and carbon fixation by green alga Scenedesmus sp. in the presence of alkanolamine CO2 absorbents. Biochem Eng J 78:18–23CrossRefGoogle Scholar
  68. Klein BC, Bonomi A, Maciel Filho R (2018) Integration of microalgae production with industrial biofuel facilities: a critical review. Renew Sust Energ Rev 82:1376–1392CrossRefGoogle Scholar
  69. Knothe G (2010) Biodiesel and renewable diesel: a comparison. Prog Energy Combust Sci 36:364–373CrossRefGoogle Scholar
  70. Kosourov S, Tsygankov A, Seibert M, Ghirardi ML (2002) Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: effects of culture parameters. Biotechnol Bioeng 78:731–740CrossRefGoogle Scholar
  71. Kumar K, Banerjee D, Das D (2014) Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana. Bioresour Technol 152:225–233CrossRefGoogle Scholar
  72. Kumar KS, Dahms H-U, Won E-J, Lee J-S, Shin K-H (2015) Microalgae–a promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352CrossRefGoogle Scholar
  73. Lam MK, Lee KT, Mohamed AR (2012) Current status and challenges on microalgae-based carbon capture. Int J Greenhouse Gas Control 10:456–469CrossRefGoogle Scholar
  74. Lananan F, Yunos FHM, Nasir NM, Bakar NSA, Lam SS, Jusoh A (2016) Optimization of biomass harvesting of microalgae, Chlorella sp. utilizing auto-flocculating microalgae, Ankistrodesmus sp. as bio-flocculant. Int Biodeterior Biodegrad 113:391–396CrossRefGoogle Scholar
  75. Lara-Gil JA, Álvarez MM, Pacheco A (2014) Toxicity of flue gas components from cement plants in microalgae CO 2 mitigation systems. J Appl Phycol 26:357–368CrossRefGoogle Scholar
  76. Lara-Gil JA, Senés-Guerrero C, Pacheco A (2016) Cement flue gas as a potential source of nutrients during CO2 mitigation by microalgae. Algal Res 17:285–292CrossRefGoogle Scholar
  77. Lee S-Y, Park S-J (2015) A review on solid adsorbents for carbon dioxide capture. J Ind Eng Chem 23:1–11CrossRefGoogle Scholar
  78. Lee J-S, Kim D-K, Lee J-P, Park S-C, Koh J-H, Cho H-S, Kim S-W (2002) Effects of SO2 and NO on growth of Chlorella sp. KR-1. Bioresour Technol 82:1–4CrossRefGoogle Scholar
  79. Leung DY, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sust Energ Rev 39:426–443CrossRefGoogle Scholar
  80. Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24:815–820Google Scholar
  81. Li C, He X, Zhu S, Zhou H, Wang Y, Li Y, Yang J, Fan J, Yang J, Wang G (2009) Crop diversity for yield increase. PLoS One 4:e8049CrossRefGoogle Scholar
  82. Li F-F, Yang Z-H, Zeng R, Yang G, Chang X, Yan J-B, Hou Y-L (2011) Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber. Ind Eng Chem Res 50:6496–6502CrossRefGoogle Scholar
  83. Li T, Xu G, Rong J, Chen H, He C, Giordano M, Wang Q (2016) The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases. J Plant Physiol 195:73–79CrossRefGoogle Scholar
  84. Liang F, Wen X, Luo L, Geng Y, Li Y (2014) Physicochemical effects on sulfite transformation in a lipid-rich Chlorella sp. strain. Chin J Oceanol Limnol 32:1288–1296CrossRefGoogle Scholar
  85. Liu Z, Wang D, Peng B, Chai L, Liu H, Yang S, Yang B, Xiang K, Liu C (2017) Transport and transformation of mercury during wet flue gas cleaning process of nonferrous metal smelting. Environ Sci Pollut Res 24:22494–22502CrossRefGoogle Scholar
  86. Maeda K, Owada M, Kimura N, Omata K, Karube I (1995) CO 2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Convers Manag 6:717–720CrossRefGoogle Scholar
  87. Mahasenan N, Smith S, Humphreys K (2003) The cement industry and global climate change: current and potential future cement industry CO2 emissions, Greenhouse Gas Control Technologies-6th International Conference. Elsevier, pp 995–1000Google Scholar
  88. Matsumoto H, Hamasaki A, Sioji N, Ikuta Y (1997) Influence of CO2, SO2 and NO in flue gas on microalgae productivity. J Chem Eng Jpn 30:620–624CrossRefGoogle Scholar
  89. Matter JM, Stute M, Snæbjörnsdottir SÓ, Oelkers EH, Gislason SR, Aradottir ES, Sigfusson B, Gunnarsson I, Sigurdardottir H, Gunnlaugsson E (2016) Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 352:1312–1314CrossRefGoogle Scholar
  90. Maza-Márquez P, Martinez-Toledo MV, Fenice M, Andrade L, Lasserrot A, Gonzalez-Lopez J (2014) Biotreatment of olive washing wastewater by a selected microalgal-bacterial consortium. Int Biodeterior Biodegrad 88:69–76CrossRefGoogle Scholar
  91. McCoy ST, Rubin ES (2008) An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage. J Greenhouse Gas Control 2:219–229CrossRefGoogle Scholar
  92. Miller SA, John VM, Pacca SA, Horvath A (2018) Carbon dioxide reduction potential in the global cement industry by 2050. Cem Concr Res 114:115–124CrossRefGoogle Scholar
  93. Mobin S, Alam F (2017) Some promising microalgal species for commercial applications: a review. Energy Procedia 110:510–517CrossRefGoogle Scholar
  94. Mohsenpour SF, Willoughby N (2016) Effect of CO2 aeration on cultivation of microalgae in luminescent photobioreactors. Biomass Bioenergy 85:168–177CrossRefGoogle Scholar
  95. Nagappan S, Verma SK (2016a) The static extraction of lipid from microalgae Desmodesmus sp. MCC34. Res J Biotechnol 11:5–9Google Scholar
  96. Nagappan S, Verma SK (2016b) Growth model for raceway pond cultivation of Desmodesmus sp. MCC34 isolated from a local water body. Eng Life Sci 16:45–52CrossRefGoogle Scholar
  97. Nagappan S, Verma SK (2018) Co-production of biodiesel and alpha-linolenic acid (omega-3 fatty acid) from microalgae, Desmodesmus sp. MCC34. Energy Source Part A 40:2933–2940CrossRefGoogle Scholar
  98. Nagappan S, Devendran S, Tsai P-C, Dahms H-U, Ponnusamy VK (2019a) Potential of two-stage cultivation in microalgae biofuel production. Fuel 252:339–349CrossRefGoogle Scholar
  99. Nagappan S, Devendran S, Tsai P-C, Dinakaran S, Dahms H-U, Ponnusamy VK (2019b) Passive cell disruption lipid extraction methods of microalgae for biofuel production–a review. Fuel 252:699–709CrossRefGoogle Scholar
  100. Nagappan S, Kumar RR, Balaji JR, Singh S, Verma SK (2019c) Direct saponification of wet microalgae by methanolic potassium hydroxide using acetone as co-solvent. Bioresour Technol Rep 5:351–354CrossRefGoogle Scholar
  101. Nagase H, Yoshihara K-I, Eguchi K, Yokota Y, Matsui R, Hirata K, Miyamoto K (1997) Characteristics of biological NOx removal from flue gas in a Dunaliella tertiolecta culture system. J Ferment Bioeng 83:461–465CrossRefGoogle Scholar
  102. Nagase H, Eguchi K, Yoshihara K-I, Hirata K, Miyamoto K (1998) Improvement of microalgal NOx removal in bubble column and airlift reactors. J Ferment Bioeng 86:421–423CrossRefGoogle Scholar
  103. Narala RR, Garg S, Sharma KK, Thomas-Hall SR, Deme M, Li Y, Schenk PM (2016) Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system. Front Energy Res 4:29CrossRefGoogle Scholar
  104. Negoro M, Shioji N, Miyamoto K, Micira Y (1991) Growth of microalgae in high CO 2 gas and effects of SO x and NO x. Appl Biochem Biotechnol 28:877CrossRefGoogle Scholar
  105. Neumann P, Torres A, Fermoso FG, Borja R, Jeison D (2015) Anaerobic co-digestion of lipid-spent microalgae with waste activated sludge and glycerol in batch mode. Int Biodeterior Biodegrad 100:85–88CrossRefGoogle Scholar
  106. Odjadjare EC, Mutanda T, Olaniran AO (2017) Potential biotechnological application of microalgae: a critical review. Crit Rev Biotechnol 37:37–52CrossRefGoogle Scholar
  107. Olaizola M (2003) Microalgal removal of CO 2 from flue gases: changes in medium pH and flue gas composition do not appear to affect the photochemical yield of microalgal cultures. Biotechnol Bioprocess Eng 8:360–367CrossRefGoogle Scholar
  108. Olofsson M, Lindehoff E, Frick B, Svensson F, Legrand C (2015) Baltic Sea microalgae transform cement flue gas into valuable biomass. Algal Res 11:227–233CrossRefGoogle Scholar
  109. Ong S-C, Kao C-Y, Chiu S-Y, Tsai M-T, Lin C-S (2010) Characterization of the thermal-tolerant mutants of Chlorella sp. with high growth rate and application in outdoor photobioreactor cultivation. Bioresour Technol 101:2880–2883CrossRefGoogle Scholar
  110. Ono E, Cuello JL (2007) Carbon dioxide mitigation using thermophilic cyanobacteria. Biosyst Eng 96:129–134CrossRefGoogle Scholar
  111. Ort DR, Zhu X, Melis A (2011) Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiol 155:79–85CrossRefGoogle Scholar
  112. Ouyang Y, Zhao Y, Sun S, Hu C, Ping L (2015) Effect of light intensity on the capability of different microalgae species for simultaneous biogas upgrading and biogas slurry nutrient reduction. Int Biodeterior Biodegrad 104:157–163CrossRefGoogle Scholar
  113. Park KY, Kweon J, Chantrasakdakul P, Lee K, Cha HY (2013) Anaerobic digestion of microalgal biomass with ultrasonic disintegration. Int Biodeterior Biodegrad 85:598–602CrossRefGoogle Scholar
  114. Pawlowski A, Mendoza J, Guzmán J, Berenguel M, Acién F, Dormido S (2014) Effective utilization of flue gases in raceway reactor with event-based pH control for microalgae culture. Bioresour Technol 170:1–9CrossRefGoogle Scholar
  115. Perazzoli S, Bruchez BM, Michelon W, Steinmetz RL, Mezzari MP, Nunes EO, da Silva ML (2016) Optimizing biomethane production from anaerobic degradation of Scenedesmus sp. biomass harvested from algae-based swine digestate treatment. Int Biodeterior Biodegrad 109:23–28CrossRefGoogle Scholar
  116. Pereira K (2012) Sand mining: The high volume–low value paradox. Coastal care. Retrieved November 20, 2013. Online at:
  117. Pires J, Alvim-Ferraz M, Martins F, Simões M (2012) Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sust Energ Rev 16:3043–3053CrossRefGoogle Scholar
  118. Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279:1–49CrossRefGoogle Scholar
  119. Praveenkumar R, Kim B, Choi E, Lee K, Park J-Y, Lee J-S, Lee Y-C, Oh Y-K (2014) Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas. Bioresour Technol 171:500–505CrossRefGoogle Scholar
  120. Radmann EM, Camerini FV, Santos TD, Costa JAV (2011) Isolation and application of SOX and NOX resistant microalgae in biofixation of CO2 from thermoelectricity plants. Energy Convers Manag 52:3132–3136CrossRefGoogle Scholar
  121. Ramanan R, Kannan K, Deshkar A, Yadav R, Chakrabarti T (2010) Enhanced algal CO2 sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond. Bioresour Technol 101:2616–2622CrossRefGoogle Scholar
  122. Rio S, Verwilghen C, Ramaroson J, Nzihou A, Sharrock P (2007) Heavy metal vaporization and abatement during thermal treatment of modified wastes. J Hazard Mater 148:521–528CrossRefGoogle Scholar
  123. Sakai N, Sakamoto Y, Kishimoto N, Chihara M, Karube I (1995) Chlorella strains from hot springs tolerant to high temperature and high CO2. Energy Convers Manag 36:693–696CrossRefGoogle Scholar
  124. Salih FM (2011) Microalgae tolerance to high concentrations of carbon dioxide: a review. J Environ Prot (Irvine, Calif) 2:648CrossRefGoogle Scholar
  125. Santiago DE, Jin H-F, Lee K (2010) The influence of ferrous-complexed EDTA as a solubilization agent and its auto-regeneration on the removal of nitric oxide gas through the culture of green alga Scenedesmus sp. Process Biochem 45:1949–1953CrossRefGoogle Scholar
  126. Saravanan AP, Mathimani T, Deviram G, Rajendran K, Pugazhendhi A (2018) Biofuel policy in India: a review of policy barriers in sustainable marketing of biofuel. J Clean Prod 193:734–747CrossRefGoogle Scholar
  127. Schneider M, Romer M, Tschudin M, Bolio H (2011) Sustainable cement production—present and future. Cem Concr Res 41:642–650CrossRefGoogle Scholar
  128. Singh R, Shukla A (2014) A review on methods of flue gas cleaning from combustion of biomass. Renew Sust Energ Rev 29:854–864CrossRefGoogle Scholar
  129. Somers MD, Quinn JC (2019) Sustainability of carbon delivery to an algal biorefinery: a techno-economic and life-cycle assessment. J CO2 Util 30:193–204CrossRefGoogle Scholar
  130. Sousa C, De Winter L, Janssen M, Vermuë MH, Wijffels RH (2012) Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity. Bioresour Technol 104:565–570CrossRefGoogle Scholar
  131. Stathi P, Litina K, Gournis D, Giannopoulos TS, Deligiannakis Y (2007) Physicochemical study of novel organoclays as heavy metal ion adsorbents for environmental remediation. J Colloid Interface Sci 316:298–309CrossRefGoogle Scholar
  132. Stewart C, Hessami M-A (2005) A study of methods of carbon dioxide capture and sequestration––the sustainability of a photosynthetic bioreactor approach. Energy Convers Manag 46:403–420CrossRefGoogle Scholar
  133. Sumprasit N, Wagle N, Glanpracha N, Annachhatre AP (2017) Biodiesel and biogas recovery from Spirulina platensis. Int Biodeterior Biodegrad 119:196–204CrossRefGoogle Scholar
  134. Sun Z, Zhang D, Yan C, Cong W, Lu Y (2015) Promotion of microalgal biomass production and efficient use of CO2 from flue gas by monoethanolamine. J Chem Technol Biotechnol 90:730–738CrossRefGoogle Scholar
  135. Svensson R, Odenberger M, Johnsson F, Strömberg L (2004) Transportation systems for CO2––application to carbon capture and storage. Energy Convers Manag 45:2343–2353CrossRefGoogle Scholar
  136. Talec A, Philistin M, Ferey F, Walenta G, Irisson J-O, Bernard O, Sciandra A (2013) Effect of gaseous cement industry effluents on four species of microalgae. Bioresour Technol 143:353–359CrossRefGoogle Scholar
  137. Thomas DM, Mechery J, Paulose SV (2016) Carbon dioxide capture strategies from flue gas using microalgae: a review. Environ Sci Pollut Res 23:16926–16940CrossRefGoogle Scholar
  138. Travieso L, Canizares R, Borja R, Benitez F, Dominguez A, Dupeyrón YR, Valiente V (1999) Heavy metal removal by microalgae. Bull Environ Contam Toxicol 62:144–151CrossRefGoogle Scholar
  139. Van Oss HG, Padovani AC (2003) Cement manufacture and the environment part II: environmental challenges and opportunities. J Ind Ecol 7:93–126CrossRefGoogle Scholar
  140. Varshney P, Mikulic P, Vonshak A, Beardall J, Wangikar PP (2015) Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour Technol 184:363–372CrossRefGoogle Scholar
  141. Vergara C, Muñoz R, Campos J, Seeger M, Jeison D (2016) Influence of light intensity on bacterial nitrifying activity in algal-bacterial photobioreactors and its implications for microalgae-based wastewater treatment. Int Biodeterior Biodegrad 114:116–121CrossRefGoogle Scholar
  142. Verma R, Srivastava A (2018) Carbon dioxide sequestration and its enhanced utilization by photoautotroph microalgae. Environ Dev 27:95–106CrossRefGoogle Scholar
  143. Vuppaladadiyam AK, Yao JG, Florin N, George A, Wang X, Labeeuw L, Jiang Y, Davis RW, Abbas A, Ralph P (2018) Impact of flue gas compounds on microalgae and mechanisms for carbon assimilation and utilization. ChemSusChem 11:334–355CrossRefGoogle Scholar
  144. Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157:1171–1177CrossRefGoogle Scholar
  145. Wang H, Zhang W, Chen L, Wang J, Liu T (2013) The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresour Technol 128:745–750CrossRefGoogle Scholar
  146. Watanabe Y, Hall DO (1995) Photosynthetic CO2 fixation technologies using a helical tubular bioreactor incorporating the filamentous cyanobacterium Spirulina platensis. Energy Convers Manag 36:721–724CrossRefGoogle Scholar
  147. Whitton R, Ometto F, Pidou M, Jarvis P, Villa R, Jefferson B (2015) Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment. Environ Technol Rev 4:133–148CrossRefGoogle Scholar
  148. Wodzinski RS, Alexander M (1978) Effect of sulfur dioxide on algae 1. J Environ Qual 7:358–360CrossRefGoogle Scholar
  149. Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JB, Lotze HK, Micheli F, Palumbi SR (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790CrossRefGoogle Scholar
  150. Wu LF, Chen PC, Lee CM (2013) The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae. Int Biodeterior Biodegrad 85:506–510CrossRefGoogle Scholar
  151. Yadav G, Karemore A, Dash SK, Sen R (2015) Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ. Bioresour Technol 191:399–406CrossRefGoogle Scholar
  152. Yang S, Wang J, Cong W, Cai Z, Ouyang F (2004a) Effects of bisulfite and sulfite on the microalga Botryococcus braunii. Enzym Microb Technol 35:46–50CrossRefGoogle Scholar
  153. Yang S, Wang J, Cong W, Cai Z, Ouyang F (2004b) Utilization of nitrite as a nitrogen source by Botryococcus braunii. Biotechnol Lett 26:239–243CrossRefGoogle Scholar
  154. Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20:14–27CrossRefGoogle Scholar
  155. Yang P, Li X, Tong Z-J, Li Q-S, He B-Y, Wang L-L, Guo S-H, Xu Z-M (2016) Use of flue gas desulfurization gypsum for leaching Cd and Pb in reclaimed tidal flat soil. Environ Sci Pollut Res 23:7840–7848CrossRefGoogle Scholar
  156. Yeh JT, Resnik KP, Rygle K, Pennline HW (2005) Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia. Fuel Process Technol 86:1533–1546CrossRefGoogle Scholar
  157. Yen HW, Ho SH, Chen CY, Chang JS (2015) CO2, NOx and SOx removal from flue gas via microalgae cultivation: a critical review. Biotechnol J 10:829–839CrossRefGoogle Scholar
  158. Yoo C, Jun S-Y, Lee J-Y, Ahn C-Y, Oh H-M (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101:S71–S74CrossRefGoogle Scholar
  159. Yoshihara K-I, Nagase H, Eguchi K, Hirata K, Miyamoto K (1996) Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivated in a long tubular photobioreactor. J Ferment Bioeng 82:351–354CrossRefGoogle Scholar
  160. Yu J, Sun L, Wang B, Qiao Y, Xiang J, Hu S, Yao H (2016) Study on the behavior of heavy metals during thermal treatment of municipal solid waste (MSW) components. Environ Sci Pollut Res 23:253–265CrossRefGoogle Scholar
  161. Yue L, Chen W (2005) Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Energy Convers Manag 46:1868–1876CrossRefGoogle Scholar
  162. Zeiler KG, Heacox DA, Toon ST, Kadam KL, Brown LM (1995) The use of microalgae for assimilation and utilization of carbon dioxide from fossil fuel-fired power plant flue gas. Energy Convers Manag 36:707–712CrossRefGoogle Scholar
  163. Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manag 181:817–831CrossRefGoogle Scholar
  164. Zheng Y, Jensen AD, Windelin C, Jensen F (2012) Review of technologies for mercury removal from flue gas from cement production processes. Prog Energy Combust Sci 38:599–629CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Senthil Nagappan
    • 1
  • Pei-Chien Tsai
    • 2
  • Saravanan Devendran
    • 3
  • Vardhini Alagarsamy
    • 1
  • Vinoth Kumar Ponnusamy
    • 2
    • 4
    Email author
  1. 1.Department of BiotechnologySri Venkateswara College of Engineering (Autonomous - Affiliated to Anna University)SriperumbudurIndia
  2. 2.Department of Medicinal and Applied ChemistryKaohsiung Medical UniversityKaohsiung CityTaiwan
  3. 3.Department of Animal SciencesUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Research Center for Environmental MedicineKaohsiung Medical UniversityKaohsiung CityTaiwan

Personalised recommendations