Ameliorative effect of selenium nanoparticles against aluminum chloride-induced hepatorenal toxicity in rats

  • Mohammed Al-Kahtani
  • Kareem MorsyEmail author
Research Article


The present study evaluated the possible ameliorative efficacy of selenium nanoparticles (SeNPs) on AlCl3-induced hepatorenal injury in rats. Animals were randomly divided into four groups (n = 6): group 1, the control; group 2, received SeNPs (0.4 mg/kg b.wt) for 21 days; group 3, injected with three doses of AlCl3 intraperitoneally (30 mg/kg/body weight) every 5 days; group 4, received SeNPs for 7 days prior to AlCl3 and then received SeNPs concurrently with AlCl3 for the following 14 days. It was observed that AlCl3 increased the levels of AST, ALT, ALP, LDH, total bilirubin, creatinine, urea, uric acid, and MDA significantly; as well as the reduction in the levels of GSH, SOD, GPx stores in comparison with the control group. These biochemical alterations were accompanied and confirmed by the lesion appeared in histological sections in addition to the increase in the expression of caspase-3 and the decrease of the Bcl-2expression. Treatment with SeNPs ameliorates the hepatorenal dysfunction, replenishes the endogenous antioxidant system, downregulates the expression of caspase-3, and upregulates the expression of Bcl-2. This hepatorenal ameliorative role may be due to the ability of SeNPs to equilibrate the oxidant/antioxidant system besides its ability to attenuate apoptosis process.


Aluminum chloride Selenium nanoparticles Antioxidant system Apoptosis Hepatorenal functions 


Funding information

This study was financially supported by the Deanship of Scientific Research at King Khalid University through research group project under grant number R.G.P.1–56–39.

Compliance with ethical standards

The experimental protocols using the animals were conducted in accordance with the regulatory laws regarding experimental ethics of animal use and collecting permits, Institute of Animal Care and Use Committee, King Khalid University, KSA.


  1. Adedosu OT, Adeleke GE, Alao TA, Ojugo NE, Akinsoji OE (2018) Effects of vitamin E administration on certain biochemical and antioxidants indices in some rat tissues treated with aluminium chloride. Ann Res Rev Biol 27(4):1–13. CrossRefGoogle Scholar
  2. AFSSAPS (2011) Agence française de sécurité sanitaire des produits de santé, Évaluation du risquelié à l’utilisation de l’aluminiumdans les produitscosmétiques. Rapport d’expertise pp, 164Google Scholar
  3. Ahmed NM, Hamaad FAM (2018) Protective effects of Açai in combination withvitamin C against aluminum-induced toxicity in rat liver. J Biol LifeSci 9(1):1–16. Google Scholar
  4. Al Eisa R, Al Nahari H (2016) Protective effect of royal jelly against the liver toxicity caused by aluminum chloride (AlCl3) in adult male rats. Adv Environ Biol 10(3):113–127Google Scholar
  5. Al-Olayan EM, El-Khadragy MF, Abdel Moneim AE (2015) The protective properties of melatonin against aluminium-induced neuronal injury. Int J Exp Pathol 96(3):196–202. CrossRefGoogle Scholar
  6. Al-Quraishy S, Dkhil MA, Abdel Moneim AE (2015) Anti-hyperglycemic activity of selenium nanoparticles in streptozotocin-induced diabetic rats. Int J Nanomedicine 29(10):6741–6756. Google Scholar
  7. Asha S, Radha E (1985) Effect of age and myocardial infarction on serum and heart lactic dehydrogenase. Exp Gerontol 20(1):67–70CrossRefGoogle Scholar
  8. Bai K, Hong B, He J, Hong Z, Tan R (2017) Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres. Int J Nanomedicine 12:4527–4539. CrossRefGoogle Scholar
  9. Barham D, Trinder P (1972) Enzymatic colorimetric method for determination of uric acid in serum plasma and urine. Analyst 97:142–146CrossRefGoogle Scholar
  10. Bartels H, Böhmer M, Heierli C (1972) Serum creatinine determination without protein precipitation. Clin Chim Acta 37:193–197CrossRefGoogle Scholar
  11. Belfield A, Goldberg D (1971) Colorimetric determination of alkaline phosphatase activity. Enzyme 12:561–566CrossRefGoogle Scholar
  12. Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888Google Scholar
  13. Bunglavan SJ, Garg AK, Dass RS, Shrivastava S (2014) Effect of supplementation of different levels of selenium as nanoparticles/sodium selenite on blood biochemical profile and humoral immunity in male Wistar rats. Vet World 7:1075–1081. CrossRefGoogle Scholar
  14. Dawood MAO, Koshio S, Zaineldin AI, Van Doan H, Moustafa EM, Abdel-Daim MM, Angeles Esteban M, Hassaan MS (2019) Dietary supplementation of selenium nanoparticles modulated systemic and mucosal immune status and stress resistance of red sea bream (Pagrus major). Fish Physiol Biochem 45(1):219–230CrossRefGoogle Scholar
  15. Doumas BT, Watson WA, Biggs HG (1971) Albumin standards and the measurement of serum albumin with bromcresol green. Clin Chim Acta 31(1):87–96CrossRefGoogle Scholar
  16. Exley C (2004) The pro-oxidant activity of aluminum. Free Radic Biol Med 36:380–387CrossRefGoogle Scholar
  17. Fawcett JK, Scott JE (1960) A rapid and precise method for the determination of urea. J Clin Pathol 13(2):156–159CrossRefGoogle Scholar
  18. Fernández-Llamosas H, Castro L, Blázquez ML, Díaz E, Carmona M (2016) Biosynthesis of selenium nanoparticles by Azoarcus sp. CIB Microb Cell Fact 15(1):109. CrossRefGoogle Scholar
  19. Horký P (2014) Influence of increased dietary selenium on glutathione peroxidase activity and glutathione concentration in erythrocytes of lactating sows. Ann Anim Sci 14(4):869–882. CrossRefGoogle Scholar
  20. Ige SF, Adeniyi MJ, Iyalla GO (2017) Allium cepa mitigates aluminum chloride-induced hepatotoxicity in male Wistar rats. J Biomed Sci 6(4,27):1–4. Google Scholar
  21. Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C (2019) Therapeutic applications of selenium nanoparticles. Biomed Pharmacother 111:802–812CrossRefGoogle Scholar
  22. Klotz K, Weistenhöfer W, Neff F, Hartwig A, van Thriel C, Drexler H (2017) The health effects of aluminum exposure. Dtsch Arztebl Int 114(39):653–659. Google Scholar
  23. Kumar N, Krishnani KK, Singh NP (2018) Comparative study of selenium and selenium nanoparticles with reference to acute toxicity, biochemical attributes, and histopathological response in fish. Environ Sci Pollut Res Int 25(9):8914–8927. CrossRefGoogle Scholar
  24. Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazinemethosulfate and molecular oxygen. Biochem Biophys Res Commun 46(2):849–854CrossRefGoogle Scholar
  25. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues bythiobarbituric acid reaction. Anal Biochem 95(2):351–358CrossRefGoogle Scholar
  26. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70(1):158–169Google Scholar
  27. Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28(1):56–63CrossRefGoogle Scholar
  28. Rezaei-Kelishadi M, Ghasemi A, Abdolyosefi NN, Zamani-Doabi S, Ramezani M, Changizi-Ashtiyani S, Rahimi A (2017) Effects of selenium nanoparticles on kidney and liver functional disorders in streptozotocin-induced diabetic rats. Physiol Pharmacol 21:155–162Google Scholar
  29. Shalby AB, Abd El-Maksoud MD, Abdel Moneim AE, Ahmed HH (2017) Antifibrotic candidates of selenium nanoparticles and selenium in the experimental model. J Appl Pharm Sci 7(9):191–198. Google Scholar
  30. Tahari FZ, Lablack M, Hamadouche NA, Tahari Z, Aoues A (2016) Protective effect of Haloxylonsali cornicum on hepatic and renal functions of Wistar rats exposed to aluminium. Afr J Biotechnol 15(9):293–302. CrossRefGoogle Scholar
  31. Taus N, Farraj M, Tănase S, Mironescu A, Boicu M, Necula V, Taus L (2013) Aluminium – a chemical neurotoxic agent. Bull Transilvania Univ Braşov Ser VI Med Sci 2(55):1–8Google Scholar
  32. Urbankova L, Horky P, Skladanka J, Pribilova M, Smolikova V, Nevrkla P, Cernei N, Lackova Z, Hedbavny J, Ridoskova A, Adam V, Kopel P (2018) Antioxidant status of rats’ blood and liver affected by sodium selenite and selenium nanoparticles. PeerJ 28(6):e4862. CrossRefGoogle Scholar
  33. Vijayaprakash S, Langeswaran K, Kumar SG, Revathy R, Balasubramanian MP (2013) Nephro-protective significance of kaempferol on mercuric chloride-induced toxicity in Wistar albino rats. Biomed Aging Pathol 3:119–124. CrossRefGoogle Scholar
  34. Walter M, Gerade H (1970) A colorimetric method for determination bilirubin in serum and plasma. Micro Chem J 15:231–236Google Scholar
  35. Yakubu MT, Musa IF (2012) Liver and kidney functional indices of pregnant rats following the administration of the crude alkaloids from Sennaalata (Linn.Roxb) leaves. Iran J Toxicol 6(16):615–625Google Scholar
  36. Zahedi-Amiri Z, Taravati A, Hejazian LB (2019) Protective effect of Rosa damascena against aluminum chloride-induced oxidative stress. Biol Trace Elem Res 187(1):120–127. CrossRefGoogle Scholar
  37. Zhang SY, Zhang J, Wang HY, Chen HY (2004) Synthesis of selenium nanoparticles in the presence of polysaccharides. Mater Lett 58(21):2590–2594. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biology, College of ScienceKing Khalid UniversityAbhaSaudi Arabia
  2. 2.Department of Zoology, Faculty of ScienceCairo UniversityCairoEgypt

Personalised recommendations