The impact of calcium peroxide on groundwater bacterial diversity during naphthalene removal by permeable reactive barrier (PRB)

  • Fatemeh Gholami
  • Mahmoud ShavandiEmail author
  • Seyed Mohammad Mehdi Dastgheib
  • Mohammad Ali Amoozegar
Research Article


Oxygen-releasing compounds (ORCs) have recently gained much attention in contaminated groundwater remediation. We investigated the impact of calcium peroxide nanoparticles on the groundwater indigenous bacteria in a bioremediation process by permeable reactive barrier (PRB). Three sand-packed columns were applied, including (1) control column (fresh groundwater), (2) natural remediation column (contaminated groundwater), and (3) biostimulation column (contaminated groundwater amended with CaO2). Actinobacteria and Proteobacteria constituted the main phyla among the identified isolates. According to the results of next-generation sequencing, Proteobacteria was the dominant phylum (81% relative abundance) in the natural remediation condition. But, it was declined to 38.1% in the biostimulation column. Meanwhile, the abundance of Actinobacteria and Bacteroidetes were increased to 25.9% and 15.4%, respectively, by exposing the groundwater microbial structure to CaO2 nanoparticles. Furthermore, orders Chlamydiales, Nitrospirales, and Oceanospirillales existing in the control column were detected in the presence of naphthalene. Shannon index was 4.32 for the control column samples, while it was reduced to 2.73 and 2.00 in the natural and biostimulation columns, respectively. Therefore, the present study provides a considerable insight into the impact of ORCs on the groundwater microbial community during the bioremediation process.


Bacterial diversity Groundwater Next-generation sequencing (NGS) Bioremediation Polycyclic aromatic hydrocarbon 



This research has been supported by the National Iranian Oil Company (NIOC), Research and Technology Directorate under contract number 71/92019. The authors are grateful to Dr. Hosseinali Asgharian for reading and editing the English text. Our thanks and appreciation also go to the people who are directly or indirectly helped us out in developing this research.

Supplementary material

11356_2019_6398_MOESM1_ESM.docx (85 kb)
ESM 1 (DOCX 85 kb)


  1. Abed RM, Safi NM, Köster J, De Beer D, El-Nahhal Y, Rullkötter J, Garcia-Pichel F (2002) Microbial diversity of a heavily polluted microbial mat and its community changes following degradation of petroleum compounds. Appl Environ Microbiol 68:1674–1683CrossRefGoogle Scholar
  2. Backman A, Jansson JK (2004) Degradation of 4-chlorophenol at low temperature and during extreme temperature fluctuations by Arthrobacter chlorophenolicus A6. Microb Ecol 48:246–253CrossRefGoogle Scholar
  3. Barman SR, Banerjee P, Mukhopadhayay A, Das P (2017) Biodegradation of acenapthene and naphthalene by Pseudomonas mendocina: Process optimization, and toxicity evaluation. J Environ Chem Eng 5:4803–4812CrossRefGoogle Scholar
  4. Behera BK, Das A, Sarkar DJ, Weerathunge P, Parida PK, Das BK, Thavamani P, Ramanathan R, Bansal V (2018) Polycyclic aromatic hydrocarbons (PAHs) in inland aquatic ecosystems: perils and remedies through biosensors and bioremediation. Environ Pollut 241:212–233CrossRefGoogle Scholar
  5. Blázquez B, Carmona M, Díaz E (2018) Transcriptional regulation of the peripheral pathway for the anaerobic catabolism of toluene and m-xylene in Azoarcus sp. CIB. Front Microbiol 9:506CrossRefGoogle Scholar
  6. Chaudhary P, Sahay H, Sharma R, Pandey AK, Singh SB, Saxena AK, Nain L (2015) Identification and analysis of polyaromatic hydrocarbons (PAHs)—biodegrading bacterial strains from refinery soil of India. Environ Monit Assess 187:391. CrossRefGoogle Scholar
  7. Cheng W, Zhang J, Wang Z, Wang M, Xie S (2014) Bacterial communities in sediments of a drinking water reservoir. Ann Microbiol 64:875–878CrossRefGoogle Scholar
  8. Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ Microbiol 3:570–577CrossRefGoogle Scholar
  9. Colombo M, Cavalca L, Bernasconi S, Andreoni V (2011) Bioremediation of polyaromatic hydrocarbon contaminated soils by native microflora and bioaugmentation with Sphingobium chlorophenolicum strain C3R: a feasibility study in solid-and slurry-phase microcosms. Int Biodeterior Biodegradation 65:191–197CrossRefGoogle Scholar
  10. Cupples AM (2013) RDX degrading microbial communities and the prediction of microorganisms responsible for RDX bioremediation. Int Biodeterior Biodegradation 85:260–270CrossRefGoogle Scholar
  11. Di Gennaro P, Rescalli E, Galli E, Sello G, Bestetti G (2001) Characterization of Rhodococcus opacus R7, a strain able to degrade naphthalene and o-xylene isolated from a polycyclic aromatic hydrocarbon-contaminated soil. Res Microbiol 152:641–651CrossRefGoogle Scholar
  12. Di Gennaro P, Terreni P, Masi G, Botti S, De Ferra F, Bestetti G (2010) Identification and characterization of genes involved in naphthalene degradation in Rhodococcus opacus R7. Appl Microbiol Biotechnol 87:297–308CrossRefGoogle Scholar
  13. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996CrossRefGoogle Scholar
  14. Fahy A, Lethbridge G, Earle R, Ball AS, Timmis KN, McGenity TJ (2005) Effects of long-term benzene pollution on bacterial diversity and community structure in groundwater. Environ Microbiol 7:1192–1199CrossRefGoogle Scholar
  15. Fuentes S, Méndez V, Aguila P, Seeger M (2014) Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications. Appl Microbiol Biotechnol 98:4781–4794CrossRefGoogle Scholar
  16. Gawor J, Grzesiak J, Sasin-Kurowska J, Borsuk P, Gromadka R, Górniak D, Świątecki A, Aleksandrzak-Piekarczyk T, Zdanowski MK (2016) Evidence of adaptation, niche separation and microevolution within the genus Polaromonas on Arctic and Antarctic glacial surfaces. Extremophiles 20:403–413CrossRefGoogle Scholar
  17. Gholami F, Shavandi M, Dastgheib SMM, Amoozegar MA (2018) Naphthalene remediation from groundwater by calcium peroxide (CaO2) nanoparticles in permeable reactive barrier (PRB). Chemosphere 212:105–113. CrossRefGoogle Scholar
  18. Gholami F, Mosmeri H, Shavandi M, Dastgheib SMM, Amoozegar MA (2019) Application of encapsulated magnesium peroxide (MgO2) nanoparticles in permeable reactive barrier (PRB) for naphthalene and toluene bioremediation from groundwater. Sci Total Environ 655:633–640CrossRefGoogle Scholar
  19. Goldman R, Enewold L, Pellizzari E, Beach JB, Bowman ED, Krishnan SS, Shields PG (2001) Smoking increases carcinogenic polycyclic aromatic hydrocarbons in human lung tissue. Cancer Res 61:6367–6371Google Scholar
  20. Hanapiah M, Zulkifli SZ, Mustafa M, Mohamat-Yusuff F, Ismail A (2018) Isolation, characterization, and identification of potential Diuron-degrading bacteria from surface sediments of Port Klang, Malaysia. Mar Pollut Bull 127:453–457CrossRefGoogle Scholar
  21. Jeon CO, Park W, Ghiorse WC, Madsen EL (2004) Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int J Syst Evol Microbiol 54:93–97CrossRefGoogle Scholar
  22. Jin J, Wu G, Guan Y (2015) Effect of bacterial communities on the formation of cast iron corrosion tubercles in reclaimed water. Water Res 71:207–218CrossRefGoogle Scholar
  23. Kaszab E, Kriszt B, Atzél B, Szabó G, Szabó I, Harkai P, Szoboszlay S (2010) The occurrence of multidrug-resistant Pseudomonas aeruginosa on hydrocarbon-contaminated sites. Microb Ecol 59:37–45CrossRefGoogle Scholar
  24. Kertesz MA, Kawasaki A (2010) Hydrocarbon-degrading Sphingomonads: Sphingomonas, Sphingobium, Novosphingobium, and Sphingopyxis. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1693–1705. CrossRefGoogle Scholar
  25. Lee DW, Lee H, Lee AH, Kwon BO, Khim JS, Yim UH, Kim BS, Kim JJ (2018) Microbial community composition and PAHs removal potential of indigenous bacteria in oil contaminated sediment of Taean coast, Korea. Environ Pollut 234:503–512CrossRefGoogle Scholar
  26. Lhotský O et al (2017) Assessment of biodegradation potential at a site contaminated by a mixture of BTEX, chlorinated pollutants and pharmaceuticals using passive sampling methods–case study. Sci Total Environ 607:1451–1465CrossRefGoogle Scholar
  27. Liu Y, Zhang J, Zhao L, Zhang X, Xie S (2014) Spatial distribution of bacterial communities in high-altitude freshwater wetland sediment. Limnology 15:249–256CrossRefGoogle Scholar
  28. Lors C, Damidot D, Ponge J-F, Périé F (2012) Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environ Pollut 165:11–17CrossRefGoogle Scholar
  29. Lowa WL, Leea C, Wilkesa M, Robertsb C, Hillb DJ (2014) Development of a rapid, effective method for seeding biofiltration systems using alginate bead-immobilized cells. Int J Chem Environ Eng 5Google Scholar
  30. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963CrossRefGoogle Scholar
  31. Margesin R, Moertelmaier C, Mair J (2013) Low-temperature biodegradation of petroleum hydrocarbons (n-alkanes, phenol, anthracene, pyrene) by four actinobacterial strains. Int Biodeterior Biodegradation 84:185–191CrossRefGoogle Scholar
  32. Martin F et al (2012) Betaproteobacteria dominance and diversity shifts in the bacterial community of a PAH-contaminated soil exposed to phenanthrene. Environ Pollut 162:345–353CrossRefGoogle Scholar
  33. Mattes TE, Alexander AK, Richardson PM, Munk AC, Han CS, Stothard P, Coleman NV (2008) The genome of Polaromonas sp. strain JS666: insights into the evolution of a hydrocarbon-and xenobiotic-degrading bacterium, and features of relevance to biotechnology. Appl Environ Microbiol 74:6405–6416CrossRefGoogle Scholar
  34. Mosmeri H, Alaie E, Shavandi M, Dastgheib SMM, Tasharrofi S (2017a) Benzene-contaminated groundwater remediation using calcium peroxide nanoparticles: synthesis and process optimization. Environ Monit Assess 189:452CrossRefGoogle Scholar
  35. Mosmeri H, Alaie E, Shavandi M, Dastgheib SMM, Tasharrofi S (2017b) Bioremediation of benzene from groundwater by calcium peroxide (CaO2) nanoparticles encapsulated in sodium alginate. J Taiwan Inst Chem Eng 78:299–306CrossRefGoogle Scholar
  36. Mosmeri H, Gholami F, Shavandi M, Alaie E, Dastgheib SMM (2018a) Application of magnesium peroxide (MgO 2) nanoparticles for toluene remediation from groundwater: batch and column studies. Environ Sci Pollut Res:1–11Google Scholar
  37. Mosmeri H, Tasharrofi S, Alaie E, Hassani SS (2018b) Controlled-release oxygen nanocomposite for bioremediation of benzene contaminated groundwater. In: New polymer nanocomposites for environmental remediation. Elsevier, pp 601–622Google Scholar
  38. Mosmeri H, Gholami F, Shavandi M, Dastgheib SMM, Alaie E (2019) Bioremediation of benzene-contaminated groundwater by calcium peroxide (CaO2) nanoparticles: continuous-flow and biodiversity studies. J Hazard Mater 371:183–190CrossRefGoogle Scholar
  39. Muangchinda C, Rungsihiranrut A, Prombutara P, Soonglerdsongpha S, Pinyakong O (2018) 16S metagenomic analysis reveals adaptability of a mixed-PAH-degrading consortium isolated from crude oil-contaminated seawater to changing environmental conditions. J Hazard Mater 357:119–127. CrossRefGoogle Scholar
  40. Nestler H, Kiesel B, Kaschabek SR, Mau M, Schlömann M, Balcke GU (2007) Biodegradation of chlorobenzene under hypoxic and mixed hypoxic-denitrifying conditions. Biodegradation 18:755–767CrossRefGoogle Scholar
  41. Padula AM et al (2015) Ambient polycyclic aromatic hydrocarbons and pulmonary function in children. J Expo Sci Environ Epidemiol 25:295CrossRefGoogle Scholar
  42. Parales RE (2010) Hydrocarbon degradation by Betaproteobacteria. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1715–1724. CrossRefGoogle Scholar
  43. Paulik LB, Hobbie KA, Rohlman D, Smith BW, Scott RP, Kincl L, Haynes EN, Anderson KA (2018) Environmental and individual PAH exposures near rural natural gas extraction. Environ Pollut 241:397–405CrossRefGoogle Scholar
  44. Prieto MB, Hidalgo A, Serra JL, Llama MAJ (2002) Degradation of phenol by Rhodococcus erythropolis UPV-1 immobilized on Biolite® in a packed-bed reactor. J Biotechnol 97:1–11CrossRefGoogle Scholar
  45. Schippers A, Bosecker K, Spröer C, Schumann P (2005) Microbacterium oleivorans sp. nov. and Microbacterium hydrocarbonoxydans sp. nov., novel crude-oil-degrading Gram-positive bacteria. Int J Syst Evol Microbiol 55:655–660CrossRefGoogle Scholar
  46. Schloss PD et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefGoogle Scholar
  47. Shao Y et al (2015a) Biodegradation of PAHs by Acinetobacter isolated from karst groundwater in a coal-mining area. Environ Earth Sci 73:7479–7488. CrossRefGoogle Scholar
  48. Shao Z, Yuan J, Lai Q, Zheng T (2015b) The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge. Front Microbiol 6:853Google Scholar
  49. Singh P, Singh VK, Singh R, Borthakur A, Kumar A, Tiwary D, Mishra PK (2018) Biological degradation of toluene by indigenous bacteria Acinetobacter junii CH005 isolated from petroleum contaminated sites in India. Energy Ecol Environ 3:162–170. CrossRefGoogle Scholar
  50. Sperfeld M, Rauschenbach C, Diekert G, Studenik S (2018) Microbial community of a gasworks aquifer and identification of nitrate-reducing Azoarcus and Georgfuchsia as key players in BTEX degradation. Water Res 132:146–157CrossRefGoogle Scholar
  51. Sun Y, Wang T, Peng X, Wang P, Lu Y (2016) Bacterial community compositions in sediment polluted by perfluoroalkyl acids (PFAAs) using Illumina high-throughput sequencing. Environ Sci Pollut Res 23:10556–10565CrossRefGoogle Scholar
  52. Táncsics A, Szabó I, Baka E, Szoboszlay S, Kukolya J, Kriszt B, Márialigeti K (2010) Investigation of catechol 2, 3-dioxygenase and 16S rRNA gene diversity in hypoxic, petroleum hydrocarbon contaminated groundwater. Syst Appl Microbiol 33:398–406CrossRefGoogle Scholar
  53. Unell M, Kabelitz N, Jansson JK, Heipieper HJ (2006) Adaptation of the psychrotroph Arthrobacter chlorophenolicus A6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids. FEMS Microbiol Lett 266:138–143CrossRefGoogle Scholar
  54. Unell M, Nordin K, Jernberg C, Stenström J, Jansson JK (2008) Degradation of mixtures of phenolic compounds by Arthrobacter chlorophenolicus A6. Biodegradation 19:495–505CrossRefGoogle Scholar
  55. Uz I, Duan Y, Ogram A (2000) Characterization of the naphthalene-degrading bacterium, Rhodococcus opacus M213. FEMS Microbiol Lett 185:231–238CrossRefGoogle Scholar
  56. Vila J, Tauler M, Grifoll M (2015) Bacterial PAH degradation in marine and terrestrial habitats. Curr Opin Biotechnol 33:95–102. CrossRefGoogle Scholar
  57. Wang D et al (2017) Biostimulation and microbial community profiling reveal insights on RDX transformation in groundwater. Microbiol Open 6:e00423CrossRefGoogle Scholar
  58. Westerberg K, Elväng AM, Stackebrandt E, Jansson JK (2000) Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. Int J Syst Evol Microbiol 50:2083–2092CrossRefGoogle Scholar
  59. Wood WA, Krieg NR (1989) Methods for general and molecular bacteriology. Am Soc MicrobiolGoogle Scholar
  60. Xu X, Zhang Z, Hu S, Ruan Z, Jiang J, Chen C, Shen Z (2017) Response of soil bacterial communities to lead and zinc pollution revealed by Illumina MiSeq sequencing investigation. Environ Sci Pollut Res 24:666–675CrossRefGoogle Scholar
  61. Yan Y, Rene ER, Ma M, Ma W, Li X, Lun X (2018) Role of sulfate on the potential biodegradation of pentabromodiphenyl ether (BDE-99) in soil columns with reclaimed water and microbial community. Int Biodeterior Biodegradation 132:1–9CrossRefGoogle Scholar
  62. Yeh C-H, Lin C-W, Wu C-H (2010) A permeable reactive barrier for the bioremediation of BTEX-contaminated groundwater: microbial community distribution and removal efficiencies. J Hazard Mater 178:74–80CrossRefGoogle Scholar
  63. Yu S, Ke L, Wong Y, Tam N (2005) Degradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from mangrove sediments. Environ Int 31:149–154CrossRefGoogle Scholar
  64. Yuan H, Yao J, Masakorala K, Wang F, Cai M, Yu C (2014) Isolation and characterization of a newly isolated pyrene-degrading Acinetobacter strain USTB-X. Environ Sci Pollut Res 21:2724–2732. CrossRefGoogle Scholar
  65. Zhao D, Liu C, Liu L, Zhang Y, Liu Q, Wu W-M (2011) Selection of functional consortium for crude oil-contaminated soil remediation. Int Biodeterior Biodegradation 65:1244–1248CrossRefGoogle Scholar
  66. Zhao Q, Hu H, Wang W, Peng H, Zhang X (2015) Genome sequence of Sphingobium yanoikuyae B1, a polycyclic aromatic hydrocarbon-degrading strain. Genome Announc 3:e01522-01514Google Scholar
  67. Zhao Q, Yue S, Bilal M, Hu H, Wang W, Zhang X (2017) Comparative genomic analysis of 26 Sphingomonas and Sphingobium strains: dissemination of bioremediation capabilities, biodegradation potential and horizontal gene transfer. Sci Total Environ 609:1238–1247CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Extremophiles Laboratory, Department of Microbiology, College of ScienceUniversity of TehranTehranIran
  2. 2.Ecology and Environmental Pollution Control Research GroupResearch Institute of Petroleum IndustryTehranIran
  3. 3.Microbiology and Biotechnology GroupResearch Institute of Petroleum IndustryTehranIran

Personalised recommendations