Investigating the potential use of an oleaginous bacterium, Rhodococcus opacus PD630, for nano-TiO2 remediation

  • Archanaa Sundararaghavan
  • Amitava Mukherjee
  • Gadi K. SuraishkumarEmail author
Sustainable Industrial and Environmental Bioprocesses


The occurrence of titanium dioxide nanoparticles (nTiO2), in the effluents released from wastewater treatment plants, has raised concerns. The fate of nTiO2 and their potential impact on organisms from different ecosystems are widely investigated. For the first time, in this work, we report the responses of an oleaginous bacteria Rhodococcus opacus PD630, belonging to an ecologically important genus Rhodococcus to environmentally relevant concentrations of nTiO2, under dark and UV light conditions. We observed a dose-dependent increase in nTiO2 uptake by the bacteria that reached a maximum of 1.4 mg nTiO2 (g cell)-1 under mid-log UV exposure, corresponding to 97% uptake. The nTiO2 induced oxidative stress in bacteria that increased from 25.1 to a maximum of 100.3, 44.1, and 51.7 μmol .OH (g cell)-1 under dark, continuous, and mid-log UV, respectively. However, nTiO2 did not affect bacterial viability. Further, due to oxidative stress, the triacylglycerol (biodiesel) content from bacteria increased from 30% to a maximum of 54% CDW. Based on our findings, we propose an application of R. opacus PD 630 in nTiO2 remediation due to their high nTiO2 uptake and resistance.


Pollutants of concern nTiO2 release Wastewater treatment Oxidative stress R. opacus Triacylglycerol 



The authors thank the Sophisticated and Analytical Instrument Facility (SAIF, IITM, Chennai) for ICP–OES analysis and SEM analysis. The authors also thank the Environmental and Water Resource Engineering section of IIT Madras for help with size and zeta potential analyses.


This study received financial assistance from the Department of Science and Technology (DST, grant no. SB/S3/CE/007/2013) and Department of Biotechnology (DBT, grant ref. no. BT/PR11328/PBD/26/176/2008), Government of India.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11356_2019_6388_MOESM1_ESM.docx (258 kb)
ESM 1 (DOCX 258 kb)


  1. Adam V, Loyaux-Lawniczak S, Quaranta G (2015) Characterization of engineered TiO2 nanomaterials in a life cycle and risk assessments perspective. Environ Sci Pollut Res 22:11175–11192. CrossRefGoogle Scholar
  2. Ahmed MB, Zhou JL, Ngo HH, Guo W, Thomaidis NS, Xu J (2017) Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. J Hazard Mater 323:274–298. CrossRefGoogle Scholar
  3. Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386. CrossRefGoogle Scholar
  4. Alvarez HM, Roxana AS, Herrero M et al (2013) Metabolism of triacylglycerols in Rhodococcus species: insights from physiology and molecular genetics. J Mol Biochem 2:69–78Google Scholar
  5. Archanaa S, Jose S, Mukherjee A, Suraishkumar GK (2019) Sustainable diesel feedstock: a comparison of oleaginous bacterial and microalgal model systems. Bioenergy Res 12:205–216. CrossRefGoogle Scholar
  6. Balan R, Suraishkumar GK (2014) Simultaneous increases in specific growth rate and specific lipid content of Chlorella vulgaris through UV-induced reactive species. Biotechnol Prog 30:291–299. CrossRefGoogle Scholar
  7. Bardaweel SK, Gul M, Alzweiri M et al (2018) Reactive oxygen species: the dual role in physiological and pathological conditions of the human body. Eurasian J Med 50:193–201. CrossRefGoogle Scholar
  8. Bar-Ilan O, Chuang CC, Schwahn DJ, Yang S, Joshi S, Pedersen JA, Hamers RJ, Peterson RE, Heideman W (2013) TiO2 nanoparticle exposure and illumination during zebrafish development: mortality at parts per billion concentrations. Environ Sci Technol 47:4726–4733. CrossRefGoogle Scholar
  9. Bilal M, Adeel M, Rasheed T, Zhao Y, Iqbal HMN (2019) Emerging contaminants of high concern and their enzyme-assisted biodegradation – a review. Environ Int 124:336–353. CrossRefGoogle Scholar
  10. Bundschuh M, Filser J, Lüderwald S, McKee MS, Metreveli G, Schaumann GE, Schulz R, Wagner S (2018) Nanoparticles in the environment: where do we come from, where do we go to? Environ Sci Eur 30:1–17. CrossRefGoogle Scholar
  11. Chavarría M, Nikel PI, Pérez-Pantoja D, De Lorenzo V (2013) The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. Environ Microbiol 15:1772–1785. CrossRefGoogle Scholar
  12. Coll C, Notter D, Gottschalk F, Sun T, Som C, Nowack B (2016) Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Nanotoxicology 10:436–444. CrossRefGoogle Scholar
  13. Dalai S, Pakrashi S, Chakravarty S, Hussain S, Chandrasekaran N, Mukherjee A (2014) Studies on interfacial interactions of TiO2 nanoparticles with bacterial cells under light and dark conditions. Bull Mater Sci 37:371–381. CrossRefGoogle Scholar
  14. Dayan A, Babin G, Ganoth A, Kayouf NS, Nitoker Eliaz N, Mukkala S, Tsfadia Y, Fleminger G (2017) The involvement of coordinative interactions in the binding of dihydrolipoamide dehydrogenase to titanium dioxide—localization of a putative binding site. J Mol Recognit 30:1–11. CrossRefGoogle Scholar
  15. De Matteis V, Cascione M, Brunetti V et al (2016) Toxicity assessment of anatase and rutile titanium dioxide nanoparticles: the role of degradation in different pH conditions and light exposure. Toxicol in Vitro 37:201–210. CrossRefGoogle Scholar
  16. Du W, Sun Y, Ji R et al (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828. CrossRefGoogle Scholar
  17. Enríquez JMH, Lajas LAC, Alamilla RG et al (2013) Synthesis of solid acid catalysts based on TiO2- SO4 2-and Pt/TiO2- SO4 2- applied in n-hexane isomerization. J Met 3:34–44. Google Scholar
  18. Fan J, Cui Y, Wan M, Wang W, Li Y (2014) Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol Biofuels 7:17. CrossRefGoogle Scholar
  19. Fang Q, Shi Q, Guo Y, Hua J, Wang X, Zhou B (2016) Enhanced bioconcentration of bisphenol A in the presence of nano-TiO2 can lead to adverse reproductive outcomes in zebrafish. Environ Sci Technol 50:1005–1013. CrossRefGoogle Scholar
  20. Galletti A, Seo S, Joo SH, Su C, Blackwelder P (2016) Effects of titanium dioxide nanoparticles derived from consumer products on the marine diatom Thalassiosira pseudonana. Environ Sci Pollut Res 23:21113–21122. CrossRefGoogle Scholar
  21. Gertler G, Brudo I, Kenig R, Fleminger G (2003) A TiO2-binding protein isolated from Rhodococcus strain GIN-1 (NCIMB 40340) - purification, properties and potential applications. Mater Werkst 34:1138–1144. CrossRefGoogle Scholar
  22. Gottschalk F, Kost E, Nowack B (2013) Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling. Environ Toxicol Chem 32:1278–1287. CrossRefGoogle Scholar
  23. Guerrini L, Alvarez-Puebla RA, Pazos-Perez N (2018) Surface modifications of nanoparticles for stability in biological fluids. Materials (Basel) 11:1–28. CrossRefGoogle Scholar
  24. Hasan Nia M, Rezaei-Tavirani M, Nikoofar AR et al (2015) Stabilizing and dispersing methods of TiO2 nanoparticles in biological studies. J Paramed Sci Spring 6:2008–4978Google Scholar
  25. He G, Chen R, Lu S et al (2015) Dominating role of ionic strength in the sedimentation of nano-TiO 2 in aquatic environments. J Nanomater 2015:1–10. Google Scholar
  26. Hollinshead WD, Henson WR, Abernathy M, Moon TS, Tang YJ (2016) Rapid metabolic analysis of Rhodococcus opacus PD630 via parallel13C-metabolite fingerprinting. Biotechnol Bioeng 113:91–100. CrossRefGoogle Scholar
  27. Horst AM, Neal AC, Mielke RE, Sislian PR, Suh WH, Madler L, Stucky GD, Holden PA (2010) Dispersion of TiO2 nanoparticle agglomerates by Pseudomonas aeruginosa. Appl Environ Microbiol 76:7292–7298. CrossRefGoogle Scholar
  28. Howell BF, McCune S, Schaffer R (1979) Lactate-to-pyruvate or pyruvate-to-lactate assay for lactate dehydrogenase: a re-examination. Clin Chem 25:269–272. Google Scholar
  29. Iswarya V, Bhuvaneshwari M, Alex SA, Iyer S, Chaudhuri G, Chandrasekaran PT, Bhalerao GM, Chakravarty S, Raichur AM, Chandrasekaran N, Mukherjee A (2015) Combined toxicity of two crystalline phases (anatase and rutile) of titania nanoparticles towards freshwater microalgae: Chlorella sp. Aquat Toxicol 161:154–169. CrossRefGoogle Scholar
  30. Iswarya V, Bhuvaneshwari M, Chandrasekaran N, Mukherjee A (2018) Trophic transfer potential of two different crystalline phases of TiO2 NPs from Chlorella sp. to Ceriodaphnia dubia. Aquat Toxicol 197:89–97. CrossRefGoogle Scholar
  31. Ivshina IB, Tyumina EA, Kuzmina MV, Vikhareva EV (2019) Features of diclofenac biodegradation by Rhodococcus ruber IEGM 346. Sci Rep 9:1–13. CrossRefGoogle Scholar
  32. Juliano C, Magrini G (2017) Cosmetic ingredients as emerging pollutants of environmental and health concern. A mini-review. Cosmetics 4:11. CrossRefGoogle Scholar
  33. Kachel M, Matwijczuk A, Przywara A, Kraszkiewicz A, Koszel M (2018) Profile of fatty acids and spectroscopic characteristics of selected vegetable oils extracted by cold maceration. Agric Eng 22:61–71. Google Scholar
  34. Keller AA, Lazareva A (2014) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1:65–70. CrossRefGoogle Scholar
  35. Kiser MA, Westerhoff P, Benn T, Wang Y, Pérez-Rivera J, Hristovski K (2009) Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43:6757–6763. CrossRefGoogle Scholar
  36. Ladner DA, Steele M, Weir A, Hristovski K, Westerhoff P (2012) Functionalized nanoparticle interactions with polymeric membranes. J Hazard Mater 211–212:288–295. CrossRefGoogle Scholar
  37. Lamaisri C, Punsuvon V, Chanprame S et al (2015) Relationship between fatty acid composition and biodiesel quality for nine commercial palm oils. Songklanakarin J Sci Technol 37:389–395Google Scholar
  38. Lee H, Segets D, Süß S, Peukert W, Chen SC, Pui DYH (2017) Liquid filtration of nanoparticles through track-etched membrane filters under unfavorable and different ionic strength conditions: experiments and modeling. J Membr Sci 524:682–690. CrossRefGoogle Scholar
  39. Li L, Sillanpää M, Risto M (2016) Influences of water properties on the aggregation and deposition of engineered titanium dioxide nanoparticles in natural waters. Environ Pollut 219:132–138. CrossRefGoogle Scholar
  40. Liu J, Williams PC, Geisler-Lee J, Goodson BM, Fakharifar M, Peiravi M, Chen D, Lightfoot DA, Gemeinhardt ME (2018) Impact of wastewater effluent containing aged nanoparticles and other components on biological activities of the soil microbiome, Arabidopsis plants, and earthworms. Environ Res 164:197–203. CrossRefGoogle Scholar
  41. Louie SM, Dale AL, Casman EA, Lowry GV (2016) Challenges facing the environmental nanotechnology research enterprise. In: Xing B, Vecitis CD, Senesi N (eds) Engineered nanoparticles and the environment: biophysicochemical processes and toxicity. Wiley, Hoboken, pp 3–19Google Scholar
  42. Manzo S, Buono S, Rametta G, Miglietta M, Schiavo S, di Francia G (2015) The diverse toxic effect of SiO2 and TiO2 nanoparticles toward the marine microalgae Dunaliella tertiolecta. Environ Sci Pollut Res 22:15941–15951. CrossRefGoogle Scholar
  43. Marslin G, Sheeba CJ, Franklin G (2017) Nanoparticles alter secondary metabolism in plants via ROS burst. Front Plant Sci 8:1–8. CrossRefGoogle Scholar
  44. Matamoros V, Sala L, Salvadó V (2012) Evaluation of a biologically-based filtration water reclamation plant for removing emerging contaminants: a pilot plant study. Bioresour Technol 104:243–249. CrossRefGoogle Scholar
  45. Matamoros V, Gutiérrez R, Ferrer I, García J, Bayona JM (2015) Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. J Hazard Mater 288:34–42. CrossRefGoogle Scholar
  46. Mathur A, Raghavan A, Chaudhury P, Johnson JB, Roy R, Kumari J, Chaudhuri G, Chandrasekaran N, Suraishkumar GK, Mukherjee A (2015) Cytotoxicity of titania nanoparticles towards waste water isolate Exiguobacterium acetylicum under UVA, visible light and dark conditions. J Environ Chem Eng 3:1837–1846. CrossRefGoogle Scholar
  47. Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL (2013) Toxicity of engineered nanoparticles in the environment. Anal Chem 85:3036–3049.
  48. McKie MJ, Andrews SA, Andrews RC (2016) Conventional drinking water treatment and direct biofiltration for the removal of pharmaceuticals and artificial sweeteners: a pilot-scale approach. Sci Total Environ 544:10–17. CrossRefGoogle Scholar
  49. Men Y, Achermann S, Helbling DE, Johnson DR, Fenner K (2017) Relative contribution of ammonia oxidizing bacteria and other members of nitrifying activated sludge communities to micropollutant biotransformation. Water Res 109:217–226. CrossRefGoogle Scholar
  50. Metsalu T, Vilo J (2015) ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res 43:W566–W570. CrossRefGoogle Scholar
  51. Minhas AK, Hodgson P, Barrow CJ, Adholeya A (2016) A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiol 7:1–19. CrossRefGoogle Scholar
  52. Moore TL, Rodriguez-Lorenzo L, Hirsch V, Balog S, Urban D, Jud C, Rothen-Rutishauser B, Lattuada M, Petri-Fink A (2015) Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev 44:6287–6305. CrossRefGoogle Scholar
  53. Nagarajan AJ, Irusappan S, Amarnath G et al (2012) Expeditious synthesis of silver nanoparticles by a novel strain Sporosarcina pasteurii SRMNP1 and patrocladogram analysis for exploration of its closely related species. Int J Sci Res 3:63–65. Google Scholar
  54. Nischwitz V, Goenaga-Infante H (2012) Improved sample preparation and quality control for the characterisation of titanium dioxide nanoparticles in sunscreens using flow field flow fractionation on-line with inductively coupled plasma mass spectrometry. J Anal At Spectrom 27:1084–1092. CrossRefGoogle Scholar
  55. Nita M, Grzybowski A (2016) The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxidative Med Cell Longev 2016:3164734–3164723. CrossRefGoogle Scholar
  56. Noman MT, Ashraf MA, Ali A (2019) Synthesis and applications of nano-TiO2: a review. Environ Sci Pollut Res 26:3262–3291. CrossRefGoogle Scholar
  57. Olabarrieta J, Monzón O, Belaustegui Y, Alvarez JI, Zorita S (2018) Removal of TiO2 nanoparticles from water by low pressure pilot plant filtration. Sci Total Environ 618:551–560. CrossRefGoogle Scholar
  58. Oriekhova O, Stoll S (2016) Stability of uncoated and fulvic acids coated manufactured CeO2 nanoparticles in various conditions: from ultrapure to natural Lake Geneva waters. Sci Total Environ 562:327–334. CrossRefGoogle Scholar
  59. Park JH, Oh N (2014) Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine 9:51–63. CrossRefGoogle Scholar
  60. Potter TM, Stern ST (2011) Evaluation of cytotoxicity of nanoparticulate materials in porcine kidney cells and human hepatocarcinoma cells. Methods Mol Biol 697:157–165. CrossRefGoogle Scholar
  61. Pulicharla R, Zolfaghari M, Brar SK, Cledon M, Drogui P, Surampalli RY (2014) Cosmetic nanomaterials in wastewater: titanium dioxide and fullerenes. J Hazard Toxic Radioact Waste 20:B4014005.
  62. Qi F, Pei H, Mu R, Ma G, Wu D, Han Q (2019) Characterization and optimization of endogenous lipid accumulation in Chlorella vulgaris SDEC-3M ability to rapidly accumulate lipid for reversing nightly lipid loss. Biotechnol Biofuels 12:1–11. CrossRefGoogle Scholar
  63. Qian J, Li K, Wang P, Wang C, Liu J, Tian X, Lu B, Guan W (2018) Unraveling adsorption behavior and mechanism of perfluorooctane sulfonate (PFOS) on aging aquatic sediments contaminated with engineered nano-TiO2. Environ Sci Pollut Res 25:17878–17889. CrossRefGoogle Scholar
  64. Raychoudhury T, Naja G, Ghoshal S (2010) Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media. J Contam Hydrol 118:143–151. CrossRefGoogle Scholar
  65. Ripolles-Avila C, Martinez-Garcia M, Hascoët A-S, Rodríguez-Jerez JJ (2019) Bactericidal efficacy of UV activated TiO2 nanoparticles against Gram-positive and Gram-negative bacteria on suspension. CyTA J Food 17:408–418. CrossRefGoogle Scholar
  66. Rocco L, Santonastaso M, Mottola F, Costagliola D, Suero T, Pacifico S, Stingo V (2015) Genotoxicity assessment of TiO2 nanoparticles in the teleost Danio rerio. Ecotoxicol Environ Saf 113:223–230. CrossRefGoogle Scholar
  67. Roy B, Chandrasekaran H, Palamadai Krishnan S, Chandrasekaran N, Mukherjee A (2018) UVΑ pre-irradiation to P25 titanium dioxide nanoparticles enhanced its toxicity towards freshwater algae Scenedesmus obliquus. Environ Sci Pollut Res 25:16729–16742. CrossRefGoogle Scholar
  68. Semenzin E, Lanzellotto E, Hristozov D, Critto A, Zabeo A, Giubilato E, Marcomini A (2015) Species sensitivity weighted distribution for ecological risk assessment of engineered nanomaterials: the n-TiO2 case study. Environ Toxicol Chem 34:2644–2659. CrossRefGoogle Scholar
  69. Setsukinai K, Urano Y, Kakinuma K, Majima HJ, Nagano T (2003) Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J Biol Chem 278:3170–3175. CrossRefGoogle Scholar
  70. Shabtai Y, Fleminger G (1994) Adsorption of Rhodococcus strain GIN-1 (NCIMB 40340) on titanium dioxide and coal fly ash particles. Appl Environ Microbiol 60:3079–3088Google Scholar
  71. Shang L, Nienhaus K, Nienhaus GU (2014) Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnology 12:1–12. CrossRefGoogle Scholar
  72. Shi X, Li Z, Chen W, Qiang L, Xia J, Chen M, Zhu L, Alvarez PJJ (2016) Fate of TiO2 nanoparticles entering sewage treatment plants and bioaccumulation in fish in the receiving streams. NanoImpact 3–4:96–103. CrossRefGoogle Scholar
  73. Shi K, Gao Z, Shi T-Q, Song P, Ren LJ, Huang H, Ji XJ (2017) Reactive oxygen species-mediated cellular stress response and lipid accumulation in oleaginous microorganisms: the state of the art and future perspectives. Front Microbiol 8:1–9. Google Scholar
  74. Simonin M, Richaume A, Guyonnet JP, Dubost A, Martins JMF, Pommier T (2016) Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Sci Rep 6:1–10. CrossRefGoogle Scholar
  75. Singh AK (2016a) The past, present, and the future of nanotechnology. Eng Nanoparticles:515–525.
  76. Singh AK (2016b) Introduction to nanoparticles and nanotoxicology. Eng Nanoparticles:1–18.
  77. Sun M, Yu Q, Hu M, Hao Z, Zhang C, Li M (2014a) Lead sulfide nanoparticles increase cell wall chitin content and induce apoptosis in Saccharomyces cerevisiae. J Hazard Mater 273:7–16. CrossRefGoogle Scholar
  78. Sun TY, Gottschalk F, Hungerbühler K, Nowack B (2014b) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76. CrossRefGoogle Scholar
  79. Sun TY, Bornhöft NA, Hungerbühler K, Nowack B (2016) Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials. Environ Sci Technol 50:4701–4711. CrossRefGoogle Scholar
  80. Thiagarajan V, Ramasubbu S, Natarajan C, Mukherjee A (2019) Differential sensitivity of marine algae Dunaliella salina and Chlorella sp. to P25 TiO2 NPs. Environ Sci Pollut Res 4:21394–21403. CrossRefGoogle Scholar
  81. Tong T, Hill AN, Alsina MA, Wu J, Shang KY, Kelly JJ, Gray KA, Gaillard JF (2015) Spectroscopic characterization of TiO2 polymorphs in wastewater treatment and sediment samples. Environ Sci Technol Lett 2:12–18. CrossRefGoogle Scholar
  82. US EPA (2010) Emerging contaminants – nanomaterials at a glance. Environmental Protection Agency, Washington, D.C.Google Scholar
  83. Wang J, Zhu X, Zhang X, Zhao Z, Liu H, George R, Wilson-Rawls J, Chang Y, Chen Y (2011) Disruption of zebrafish (Danio rerio) reproduction upon chronic exposure to TiO2 nanoparticles. Chemosphere 83:461–467. CrossRefGoogle Scholar
  84. Westerhoff P, Song G, Hristovski K, Kiser MA (2011) Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. J Environ Monit 13:1195–1203. CrossRefGoogle Scholar
  85. Yeo MK, Nam DH (2013) Influence of different types of nanomaterials on their bioaccumulation in a paddy microcosm: a comparison of TiO2 nanoparticles and nanotubes. Environ Pollut 178:166–172. CrossRefGoogle Scholar
  86. Yu Q, Liu Z, Xu H, Zhang B, Zhang M, Li M (2015) TiO 2 nanoparticles promote the production of unsaturated fatty acids (UFAs) fighting against oxidative stress in Pichia pastoris. RSC Adv 5:41033–41040. CrossRefGoogle Scholar
  87. Zhang S, Gitungo SW, Axe L, Raczko RF, Dyksen JE (2017) Biologically active filters – an advanced water treatment process for contaminants of emerging concern. Water Res 114:31–41. CrossRefGoogle Scholar
  88. Zhang S, Courtois S, Gitungo S, Raczko RF, Dyksen JE, Li M, Axe L (2018) Microbial community analysis in biologically active filters exhibiting efficient removal of emerging contaminants and impact of operational conditions. Sci Total Environ 640–641:1455–1464. CrossRefGoogle Scholar
  89. Zhang M, Yang J, Cai Z, Feng Y, Wang Y, Zhang D, Pan X (2019) Detection of engineered nanoparticles in aquatic environments: current status and challenges in enrichment, separation, and analysis. Environ Sci Nano 6:709–735. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences buildingIndian Institute of Technology MadrasChennaiIndia
  2. 2.Centre for NanobiotechnologyVIT UniversityVelloreIndia

Personalised recommendations