Roles of surfactants in pressure-driven membrane separation processes: a review

  • Lixiu Shi
  • Jinhui HuangEmail author
  • Guangming ZengEmail author
  • Lei Zhu
  • Yanling Gu
  • Yahui Shi
  • Kaixin Yi
  • Xue Li
Review Article


Surfactants widely exist in various kinds of wastewaters which could be treated by pressure-driven membrane separation (PDMS) techniques. Due to the special characteristics of surfactants, they may affect the performance of membrane filtration. Over the last two decades, there are a number of studies on treating wastewaters containing surfactants by PDMS. The current paper gives a review of the roles of surfactants in PDMS processes. The effects of surfactants on membrane performance were discussed via two aspects: influence of surfactants on membrane fouling and enhanced removal of pollutants by surfactants. The characteristics of surfactants in solution and at solid–liquid interface were summarized. Surfactants in membrane filtration processes cause membrane fouling mainly through adsorption, concentration polarization, pore blocking, and cake formation, and fouling degree may be influenced by various factors (feed water composition, membrane properties, and operation conditions). Furthermore, surfactants may also have a positive effect on membrane performance. Enhanced removal of various kinds of pollutants by PDMS in the presence of surfactants has been summarized, and the removal mechanism has been revealed. Based on the current reports, further studies on membrane fouling caused by surfactants and enhanced removal of pollutants by surfactant-aided membrane filtration were also proposed.


Surfactant Pressure-driven membrane filtration Membrane fouling Pollutant removal Concentration polarization 



Atomic force microscope


Cellulose acetate


Computational fluid dynamics


Critical micelle concentration


Cetyl pyridinium chloride


Hexadecyl trimethyl ammonium bromide


Ethylene oxide




Molecular weight cutoff




Nonylphenol polyethylene glycol ether








Pressure-driven membrane separation


Polyether sulfone






Polyvinylidene fluoride


Regenerated cellulose


Resistance in series


Reverse osmosis




Sodium dodecyl sulfate


Sodium dodecyl benzene sulfonate


Scanning electron microscope


Transmembrane pressure


Funding information

This study was financially supported by the National Natural Science Foundation of China (51578222, 51178172, 51521006, 51308076, and 51378190), the Project of Chinese Ministry of Education (113049A), the Research Fund for the Program for Chang jiang Scholars and Innovative Research Team in University (IRT-13R17), and the Hunan Provincial Innovation Foundation for Postgraduate (Grant No. CX2015B092).


  1. Acero JL, Javier Benitez F, Real FJ, Teva F (2017) Removal of emerging contaminants from secondary effluents by micellar-enhanced ultrafiltration. Sep Purif Technol 181:123–131. CrossRefGoogle Scholar
  2. Akay G, Wakeman RJ (1994a) Mechanisms of permeate flux decay, solute rejection and concentration polarisation in crossflow filtration of a double chain ionic surfactant dispersion. J Membr Sci 88:177–195. CrossRefGoogle Scholar
  3. Akay G, Wakeman RJ (1994b) Permeate flux decay during crossflow microfiltration of a cationic surfactant dispersion. Filtr Sep. 31:727–731. CrossRefGoogle Scholar
  4. Aoudia M, Allal N, Djennet A, Toumi L (2003) Dynamic micellar enhanced ultrafiltration: use of anionic (SDS)–nonionic(NPE) system to remove Cr3+ at low surfactant concentration. J Membr Sci 217:181–192. CrossRefGoogle Scholar
  5. Atkin R, Craig VSJ, Wanless EJ, Biggs S (2003) Mechanism of cationic surfactant adsorption at the solid–aqueous interface. Adv Colloid Interfac Sci 103:219–304. CrossRefGoogle Scholar
  6. Aydiner C (2010) A novel approach based on distinction of actual and pseudo resistances in membrane fouling: “pseudo resistance” concept and its implementation in nanofiltration of single solutions. J Membr Sci 361:96–112. CrossRefGoogle Scholar
  7. Basar CA, Karagunduz A, Cakici A, Keskinler B (2004) Removal of surfactants by powdered activated carbon and microfiltration. Water Res 38:2117–2124. CrossRefGoogle Scholar
  8. Baudequin C, Couallier E, Rakib M, Deguerry I, Severac R, Pabon M (2011) Purification of firefighting water containing a fluorinated surfactant by reverse osmosis coupled to electrocoagulation–filtration. Sep Purif Technol 76:275–282. CrossRefGoogle Scholar
  9. Baudequin C, Mai Z, Rakib M, Deguerry I, Severac R, Pabon M, Couallier E (2014) Removal of fluorinated surfactants by reverse osmosis—role of surfactants in membrane fouling. J Membr Sci 458:111–119. CrossRefGoogle Scholar
  10. Bielska M, Sobczynska A, Prochaska K (2009) Dye-surfactant interaction in aqueous solutions. Dyes Pigments 80:201–205. CrossRefGoogle Scholar
  11. Boussu K, Kindts C, Vandecasteele C, Van der Bruggen B (2007) Surfactant fouling of nanofiltration membranes: measurements and mechanisms. Chemosphere. 8:1836–1845. CrossRefGoogle Scholar
  12. Byhlin H, Jonsson AS (2003) Influence of adsorption and concentration polarisation on membrane performance during ultrafiltration of a non-ionic surfactant. Desalination. 151:21–31. CrossRefGoogle Scholar
  13. Channarong B, Lee SH, Bade R, Shipin OV (2010) Simultaneous removal of nickel and zinc from aqueous solution by micellar-enhanced ultrafiltration and activated carbon fiber hybrid process. Desalination. 262:221–227. CrossRefGoogle Scholar
  14. Chen J, Li Q, Elimelech M (2004) In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration. Adv Colloid Interface Sci. 107:83–108. CrossRefGoogle Scholar
  15. Chen D, Zhao X, Li F, Zhang X (2016) Influence of surfactant fouling on rejection of trace nuclides and boron by reverse osmosis. Desalination. 377:47–53. CrossRefGoogle Scholar
  16. Chen M, Shafer-Peltier K, Randtke SJ, Peltier E (2018) Modeling arsenic (V) removal from water by micellar enhanced ultrafiltration in the presence of competing anions. Chemosphere. 213:285–294. CrossRefGoogle Scholar
  17. Childress AE, Deshmukh SS (1998) Effect of humic substances and anionic surfactants on the surface charge and performance of reverse osmosis membranes. Desalination. 118:167–174. CrossRefGoogle Scholar
  18. Chiu TY, James AE (2006) Microfiltration of amphoteric surfactant using ceramic membranes. Colloids Surf A Physicochem Eng Asp. 280:58–65. CrossRefGoogle Scholar
  19. Cornelis G, Boussu K, Van der Bruggen B, Devreese I, Vandecasteele C (2005) Nanofiltration of nonionic surfactants: effect of the molecular weight cutoff and contact angle on flux behavior. Ind Eng Chem Res 44:7652–7658. CrossRefGoogle Scholar
  20. Danis U, Aydiner C (2009) Investigation of process performance and fouling mechanisms in micellar-enhanced ultrafiltration of nickel-contaminated waters. J Hazard Mater 162:577–587. CrossRefGoogle Scholar
  21. Dasgupta J, Sikder J, Chakraborty S, Curcio S, Drioli E (2015) Remediation of textile effluents by membrane based treatment techniques: a state of the art review. J Environ Manag 147:55–72. CrossRefGoogle Scholar
  22. Deriszadeh A, Husein MM, Harding TG (2010) Produced water treatment by micellar-enhanced ultrafiltration. Environ Sci Technol. 44:1767–1772. CrossRefGoogle Scholar
  23. Dickhout JM, Moreno J, Biesheuvel PM, Boels L, Lammertink RGH, de Vos WM (2017) Produced water treatment by membranes: a review from a colloidal perspective. J Colloid Interface Sci. 487:523–534. CrossRefGoogle Scholar
  24. Doulia D, Xiarchos I (2007) Ultrafiltration of micellar solutions of nonionic surfactants with or without alachlor pesticide. J Membr Sci 296:58–64. CrossRefGoogle Scholar
  25. Doulia D, Gekas V, Träg→dh G (1992) Interaction behaviour in ultrafiltration of nonionic surfactants. Part 1. Flux behaviour. J Membr Sci 69:251–258. CrossRefGoogle Scholar
  26. Doulia D, Trägårdh G, Gekas V (1997) Interaction behaviour in ultrafiltration of nonionic surfactants part II. Static adsorption below CMC. J Membr Sci 123:133–142. CrossRefGoogle Scholar
  27. Faibish RS, Cohen Y (2001) Fouling and rejection behavior of ceramic and polymer-modified ceramic membranes for ultrafiltration of oil-in-water emulsions and microemulsions. Colloids Surf A-Physicochem Eng Asp. 191:27–40. CrossRefGoogle Scholar
  28. Fernandez E, Benito JM, Pazos C, Coca J (2005) Ceramic membrane ultrafiltration of anionic and nonionic surfactant solutions. J Membr Sci 246:1–6. CrossRefGoogle Scholar
  29. Field R, Hang S, Arnot T (1994) The influence of surfactant on water flux through microfiltration membranes. J Membr Sci 86:291–304. CrossRefGoogle Scholar
  30. Fillipi BR, Brant LW, Scamehorn JF, Christian SD (1999) Use of micellar-enhanced ultrafiltration at low surfactant concentrations and with anionic–nonionic surfactant mixtures. J Colloid Interface Sci. 213:68–80. CrossRefGoogle Scholar
  31. Galiano F, Figoli A, Deowan SA, Johnson D, Altinkaya SA, Veltri L, de Luca G, Mancuso R, Hilal N, Gabriele B, Hoinkis J (2015) A step forward to a more efficient wastewater treatment by membrane surface modification via polymerizable bicontinuous microemulsion. J Membr Sci 482:103–114. CrossRefGoogle Scholar
  32. Gekas V, Persson KM, Wahlgren M, Sivik B (1992) Contact angles of ultrafiltration membranes and their possible correlation to membrane performance. J Membr Sci 72:293–302. CrossRefGoogle Scholar
  33. Grzegorzek M, Majewska-Nowak K (2018) The use of micellar-enhanced ultrafiltration (MEUF) for fluoride removal from aqueous solutions. Sep Purif Technol 195:1–11. CrossRefGoogle Scholar
  34. Gurreri L, Tamburini A, Cipollina A, Micale G, Ciofalo M (2014) CFD prediction of concentration polarization phenomena in spacer-filled channels for reverse electrodialysis. J Membr Sci 468:133–148. CrossRefGoogle Scholar
  35. Hąc-Wydro K, Pałasińska I, Miśkowiec P (2016) The comparative studies on the ability of anionic surfactants to bind lead(II) ions. J Mol Liq 219:1071–1077. CrossRefGoogle Scholar
  36. Hąc-Wydro K, Mateja A, Ożóg A, Miśkowiec P (2017) Influence of metal ions on the aggregation of anionic surfactants. Studies on the interactions between environmental pollutants in aqueous solutions. J Mol Liq 240:514–521. CrossRefGoogle Scholar
  37. Häyrynen P, Landaburu-Aguirre J, Pongrácz E, Keiski RL (2012) Study of permeate flux in micellar-enhanced ultrafiltration on a semi-pilot scale: simultaneous removal of heavy metals from phosphorous rich real wastewaters. Sep Purif Technol 93:59–66. CrossRefGoogle Scholar
  38. Hermia J (1982) Constant pressure blocking filtration laws—application to power-law non-Newtonian fluids. Trans Inst Chem Eng 60:183–187Google Scholar
  39. Holmberg K, Bo J, Kronberg B, Lindman B (2002) Surfactants and polymers in aqueous solution. Wiley, New York. CrossRefGoogle Scholar
  40. Huang J, Zhou C, Zeng G, Li X, Niu J, Huang H, Shi L, He S et al (2010) Micellar-enhanced ultrafiltration of methylene blue from dye wastewater via a polysulfone hollow fiber membrane. J Membr Sci 365:138–144. CrossRefGoogle Scholar
  41. Huang J, Guo S, Zeng G, Xiong Y, Zhang D, Tang X, Xie G (2012) Prediction of fouling resistance and permeate flux in cross-flow micellar-enhanced ultrafiltration (MEUF). Colloids Surf A Physicochem Eng Asp 401:81–89. CrossRefGoogle Scholar
  42. Huang J, Qi F, Zeng G, Shi L, Li X, Gu Y, Shi Y (2017a) Repeating recovery and reuse of SDS micelles from MEUF retentate containing Cd2+ by acidification UF. Colloids Surf A Physicochem Eng Asp. 520:361–368. CrossRefGoogle Scholar
  43. Huang J, Yuan F, Zeng G, Li X, Gu Y, Shi L, Liu W, Shi Y (2017b) Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration. Chemosphere. 173:199–206. CrossRefGoogle Scholar
  44. Huang J, Cheng W, Shi Y, Zeng G, Yu H, Gu Y, Shi L, Yi K (2018a) Honeycomb-like carbon nitride through supramolecular preorganization of monomers for high photocatalytic performance under visible light irradiation. Chemosphere 211:324–334. CrossRefGoogle Scholar
  45. Huang J, Li H, Zeng G, Shi L, Gu Y, Shi Y, Tang B, Li X et al (2018b) Removal of Cd(II) by MEUF-FF with anionic-nonionic mixture at low concentration. Sep Purif Technol 207:199–205. CrossRefGoogle Scholar
  46. Huang J, Shi L, Zeng G, Li H, Huang H, Gu Y, Shi Y, Yi K, Li X (2019a) Removal of Cd(II) by micellar enhanced ultrafiltration: role of SDS behaviors on membrane with low concentration. J Clean Prod 209:53–61. CrossRefGoogle Scholar
  47. Huang J, Zhu L, Zeng G, Shi L, Shi Y, Yi K, Li X (2019b) Recovery of Cd(II) and surfactant in permeate from MEUF by foam fractionation with anionic-nonionic surfactant mixtures. Colloids Surf A Physicochem Eng Asp 570:81–88. CrossRefGoogle Scholar
  48. Innocenzi V, Prisciandaro M, Tortora F, di Celso GM, Veglio F (2018a) Treatment of WEEE industrial wastewaters: removal of yttrium and zinc by means of micellar enhanced ultra filtration. Waste Manag 74:393–403. CrossRefGoogle Scholar
  49. Innocenzi V, Tortora F, Prisciandaro M, De Michelis I, Veglio F, di Celso GM (2018b) Purification of residual leach liquors from hydrometallurgical process of NiMH spent batteries through micellar enhanced ultra filtration. J Environ Manag 215:377–384. CrossRefGoogle Scholar
  50. Jönsson A-S, Jönsson B (1991) The influence of nonionic and ionic surfactants on hydrophobic and hydrophilic ultrafiltration membranes. J Membr Sci 56:49–76. CrossRefGoogle Scholar
  51. Jonsson A, Jonsson B, Byhlin H (2006) A concentration polarization model for the ultrafiltration of nonionic surfactants. J Colloid Interface Sci. 304:191–199. CrossRefGoogle Scholar
  52. Joshi T, Mata J, Bahadur P (2005) Micellization and interaction of anionic and nonionic mixed surfactant systems in water. Colloids Surf A Physicochem Eng Asp. 260:209–215. CrossRefGoogle Scholar
  53. Kamenka N, Zana R (1997) Interaction of magnesium and cadmium dodecyl sulfates with poly(ethylene oxide) and poly(vinylpyrrolidone): conductance, self-diffusion and fluorescence probing investigations. J Colloid Interface Sci 188:130–138. CrossRefGoogle Scholar
  54. Kaplan MC, Jégou A, Chaufer B, Rabiller-Baudry M, Michalsky MC (2002) Adsorption of lysozyme on membrane material and cleaning with non-ionic surfactant characterized through contact angle measurements. Desalination. 146:149–154. CrossRefGoogle Scholar
  55. Kavitskaya AA, Klimenko NA, Bildyukevich AV, Petrachkov AA (2003) Adsorption of anionic surface active substances (SAS) on charged membranes. Desalination. 158:225–230. CrossRefGoogle Scholar
  56. Kaya Y, Aydiner C, Barlas H, Keskinler B (2006) Nanofiltration of single and mixture solutions containing anionics and nonionic surfactants below their critical micelle concentrations (CMCs). J Membr Sci 282:401–412. CrossRefGoogle Scholar
  57. Kaya Y, Barlas H, Arayici S (2011) Evaluation of fouling mechanisms in the nanofiltration of solutions with high anionic and nonionic surfactant contents using a resistance-in-series model. J Membr Sci 367:45–54. CrossRefGoogle Scholar
  58. Khosa MA, Shah SS, Feng X (2013) Micellar enhanced ultrafiltration of organic dyes. Sep Sci Technol 48:1315–1323. CrossRefGoogle Scholar
  59. Khristov K, Czarnecki J (2010) Emulsion films stabilized by natural and polymeric surfactants. Curr Opin Colloid Interface Sci 15:324–329. CrossRefGoogle Scholar
  60. Kim CK, Kim SS, Kim DW, Lim JC, Kim JJ (1998) Removal of aromatic compounds in the aqueous solution via micellar enhanced ultrafiltration: part 1. Behavior of nonionic surfactants. J Membr Sci 147:13–22. CrossRefGoogle Scholar
  61. Kishimoto N, Kimura H (2012) Fouling behaviour of a reverse osmosis membrane by three types of surfactants. J Water Reuse Desal 2:40–46. CrossRefGoogle Scholar
  62. Kowalska I, Kabsch-Korbutowicz M, Majewska-Nowak K, Winnicki T (2004) Separation of anionic surfactants on ultrafiltration membranes. Desalination. 162:33–40. CrossRefGoogle Scholar
  63. Kowalska I, Majewska-Nowak K, Kabsch-Korbutowicz M (2006) Influence of temperature on anionic surface active agent removal from a water solution by ultrafiltration. Desalination. 198:124–131. CrossRefGoogle Scholar
  64. Li X, Mo Y, Li J, Guo W, Ngo HH (2017) In-situ monitoring techniques for membrane fouling and local filtration characteristics in hollow fiber membrane processes: a critical review. J Membr Sci 528:187–200. CrossRefGoogle Scholar
  65. Lin Y-M, Rutledge GC (2018) Separation of oil-in-water emulsions stabilized by different types of surfactants using electrospun fiber membranes. J Membr Sci 563:247–258. CrossRefGoogle Scholar
  66. Liu SX, Kim J-T (2009) Study of adsorption kinetics of surfactants onto polyethersulfone membrane surface using QCM-D. Desalination. 247:355–361. CrossRefGoogle Scholar
  67. Lobo A, Cambiella Á, Benito JM, Pazos C, Coca J (2006) Ultrafiltration of oil-in-water emulsions with ceramic membranes: influence of pH and crossflow velocity. J Membr Sci 278:328–334. CrossRefGoogle Scholar
  68. López-Mahía P, Muniategui S, Prada-Rodríguez D, Prieto-Blanco MC (2005) Surfactants and detergents. In: Worsfold P, Townshend A, Poole C (eds) Encyclopedia of analytical science, 2nd edn. Elsevier, Oxford, pp 554–561. CrossRefGoogle Scholar
  69. Lu S, Wu J, Somasundaran P (2012) Micellar evolution in mixed nonionic/anionic surfactant systems. J Colloid Interface Sci 367:272–279. CrossRefGoogle Scholar
  70. Lu D, Zhang T, Ma J (2015) Ceramic membrane fouling during ultrafiltration of oil/water emulsions: roles played by stabilization surfactants of oil droplets. Environ Sci Technol 49:4235–4244. CrossRefGoogle Scholar
  71. Luo J, Ding L, Wan Y, Jaffrin MY (2012) Flux decline control in nanofiltration of detergent wastewater by a shear-enhanced filtration system. Chem Eng J 181-182:397–406. CrossRefGoogle Scholar
  72. Mai Z, Butin V, Rakib M, Zhu H, Rabiller-Baudry M, Couallier E (2016) Influence of bulk concentration on the organisation of molecules at a membrane surface and flux decline during reverse osmosis of an anionic surfactant. J Membr Sci 499:257–268. CrossRefGoogle Scholar
  73. Majewska-Nowak K, Kowalska I, Kabsch-Korbutowicz M (2005) Ultrafiltration of SDS solutions using polymeric membranes. Desalination. 184:415–422. CrossRefGoogle Scholar
  74. Manchalwar SM, Anthati VA, Marathe KV (2010) Simulation of micellar enhanced ultrafiltration by multiple solute model. J Hazard Mater 184:485–492. CrossRefGoogle Scholar
  75. Markels JH, Lynn S, Radke CJ (1995) Cross-flow ultrafiltration of micellar surfactant solutions. AICHE J 41:2058–2066. CrossRefGoogle Scholar
  76. Matos M, Gutiérrez G, Lobo A, Coca J, Pazos C, Benito JM (2016) Surfactant effect on the ultrafiltration of oil-in-water emulsions using ceramic membranes. J Membr Sci 520:749–759. CrossRefGoogle Scholar
  77. Mietton-Peuchot M, Ranisio O, Peuchot C (1997) Study of behaviour of membranes in the presence of anionic or nonionic surfactants. Filtr Sep 34:883–886. CrossRefGoogle Scholar
  78. Mizoguchi K, Fukui K, Yanagishita H, Nakane T, Nakata T (2002) Ultrafiltration behavior of a new type of non-ionic surfactant around the CMC. J Membr Sci 208:285–288. CrossRefGoogle Scholar
  79. Nguyen LAT, Minding M, Schwarze M, Drews A, Schomäcker R, Kraume M (2013) Adsorption and filtration behaviour of non-ionic surfactants during reverse micellar-enhanced ultrafiltration. J Membr Sci 433:80–87. CrossRefGoogle Scholar
  80. Nguyen LAT, Schwarze M, Schomaecker R (2015) Adsorption of non-ionic surfactant from aqueous solution onto various ultrafiltration membranes. J Membr Sci 493:120–133. CrossRefGoogle Scholar
  81. Paipuri M, Kim SH, Hassan O, Hilal N, Morgan K (2015) Numerical modelling of concentration polarisation and cake formation in membrane filtration processes. Desalination. 365:151–159. CrossRefGoogle Scholar
  82. Pal N, Saxena N, Divya Laxmi KV, Mandal A (2018) Interfacial behaviour, wettability alteration and emulsification characteristics of a novel surfactant: implications for enhanced oil recovery. Chem Eng Sci 187:200–212. CrossRefGoogle Scholar
  83. Parekh P, Varade D, Parikh J, Bahadur P (2011) Anionic–cationic mixed surfactant systems: micellar interaction of sodium dodecyl trioxyethylene sulfate with cationic gemini surfactants. Colloids Surf A Physicochem Eng Asp. 385:111–120. CrossRefGoogle Scholar
  84. Paria S, Khilar KC (2004) A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface. Adv Colloid Interface Sci 110:75–95. CrossRefGoogle Scholar
  85. Pereira RFP, Valente AJM, Burrows HD (2010) Thermodynamic analysis of the interaction between trivalent metal ions and sodium dodecyl sulfate: an electrical conductance study. J Mol Liq 156:109–114. CrossRefGoogle Scholar
  86. Purkait MK, DasGupta S, De S (2004) Resistance in series model for micellar enhanced ultrafiltration of eosin dye. J Colloid Interface Sci. 270:496–506. CrossRefGoogle Scholar
  87. Rahmanian B, Pakizeh M, Maskooki A (2010) Micellar-enhanced ultrafiltration of zinc in synthetic wastewater using spiral-wound membrane. J Membr Sci 184:261–267. CrossRefGoogle Scholar
  88. Rahmati NO, Chenar MP, Namaghi HA (2017) Removal of free active chlorine from synthetic wastewater by MEUF process using polyethersulfone/titania nanocomposite membrane. Sep Purif Technol 181:213–222. CrossRefGoogle Scholar
  89. Samal K, Das C, Mohanty K (2017) Application of saponin biosurfactant and its recovery in the MEUF process for removal of methyl violet from wastewater. J Environ Manag 203:8–16. CrossRefGoogle Scholar
  90. Samper E, Rodríguez M, De la Rubia MA, Prats D (2009) Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS). Sep Purif Technol 65:337–342. CrossRefGoogle Scholar
  91. Schwarze M (2017) Micellar-enhanced ultrafiltration (MEUF)—state of the art. Environ Sci Water Res 3:598–624. CrossRefGoogle Scholar
  92. Schwarze M, Le DK, Wille S, Drews A, Arlt W, Schomäcker R (2010) Stirred cell ultrafiltration of aqueous micellar TX-100 solutions. Sep Purif Technol 74:21–27. CrossRefGoogle Scholar
  93. Schwarze M, Schaefer L, Chiappisi L, Gradzielski M (2018) Micellar enhanced ultrafiltration (MEUF) of methylene blue with carboxylate surfactants. Sep Purif Technol 199:20–26. CrossRefGoogle Scholar
  94. She Q, Wang R, Fane AG, Tang CY (2016) Membrane fouling in osmotically driven membrane processes: a review. J Membr Sci 499:201–233. CrossRefGoogle Scholar
  95. Shi Y, Huang J, Zeng G, Cheng W, Yu H, Gu Y, Shi L, Yi K (2018a) Stable, metal-free, visible-light-driven photocatalyst for efficient removal of pollutants: mechanism of action. J Colloid Interface Sci. 531:433–443. CrossRefGoogle Scholar
  96. Shi Y, Huang J, Zeng G, Gu Y, Hu Y, Tang B, Zhou J, Yang Y, Shi L (2018b) Evaluation of soluble microbial products (SMP) on membrane fouling in membrane bioreactors (MBRs) at the fractional and overall level: a review. Rev Environ Sci Biotechnol 17:71–85. CrossRefGoogle Scholar
  97. Shi Y, Huang J, Zeng G, Cheng W, Hu J, Shi L, Yi K (2019) Evaluation of self-cleaning performance of the modified g-C3N4 and GO based PVDF membrane toward oil-in-water separation under visible-light. Chemosphere 230:40–50. CrossRefGoogle Scholar
  98. Srisukphun T, Chiemchaisri C, Urase T, Yamamoto K (2009) Experimentation and modeling of foulant interaction and reverse osmosis membrane fouling during textile wastewater reclamation. Sep Purif Technol 68:37–49. CrossRefGoogle Scholar
  99. Srisukphun T, Chiemchaisri C, Urase T, Yamamoto K (2010) Foulant interaction and RO productivity in textile wastewater reclamation plant. Desalination. 250:845–849. CrossRefGoogle Scholar
  100. Suárez L, Diez MA, Riera FA (2014) Transport mechanisms of detergent ingredients through ultrafiltration membranes. Sep Purif Technol 136:115–122. CrossRefGoogle Scholar
  101. Sumisha A, Arthanareeswaran G, Lukka Thuyavan Y, Ismail AF, Chakraborty S (2015) Treatment of laundry wastewater using polyethersulfone/polyvinylpyrollidone ultrafiltration membranes. Ecotoxicol Environ Saf 121:174–179. CrossRefGoogle Scholar
  102. Tang CY, Chong TH, Fane AG (2011) Colloidal interactions and fouling of NF and RO membranes: a review. Adv Colloid Interface Sci 164:126–143. CrossRefGoogle Scholar
  103. Tanhaei B, Pourafshari Chenar M, Saghatoleslami N, Hesampour M, Kallioinen M, Sillanpää M, Mänttäri M (2014) Removal of nickel ions from aqueous solution by micellar-enhanced ultrafiltration, using mixed anionic–non-ionic surfactants. Sep Purif Technol 138:169–176. CrossRefGoogle Scholar
  104. Tortora F, Innocenzi V, di Celso GM, Veglio F, Capocelli M, Piemonte V, Prisciandaro M (2018) Application of micellar-enhanced ultrafiltration in the pre-treatment of seawater for boron removal. Desalination. 428:21–28. CrossRefGoogle Scholar
  105. Tu Z, Ding L, Frappart M, Jaffrin MY (2009) Studies on treatment of sodium dodecyl benzene sulfonate solution by high shear ultrafiltration system. Desalination. 240:251–256. CrossRefGoogle Scholar
  106. Tummons EN, Chew JW, Fane AG, Tarabara VV (2017) Ultrafiltration of saline oil-in-water emulsions stabilized by an anionic surfactant: effect of surfactant concentration and divalent counterions. J Membr Sci 537:384–395. CrossRefGoogle Scholar
  107. Urbański R, Góralska E, Bart H-J, Szymanowski J (2002) Ultrafiltration of surfactant solutions. J Colloid Interface Sci. 253:419–426. CrossRefGoogle Scholar
  108. Valente AJM, Burrows HD, Pereira RF, Ribeiro ACF, Pereira J, Lobo VMM (2006) Effect of Europium(III) chloride on the aggregation behavior of sodium dodecyl sulfate. Langmuir. 22:5625–5629. CrossRefGoogle Scholar
  109. Valente AJM, Burrows HD, Cruz SMA, Pereira RFP, Ribeiro ACF, Lobo VMM (2008) Aggregation and micellization of sodium dodecyl sulfate in the presence of Ce(III) at different temperatures: a conductometric study. J Colloid Interface Sci. 323:141–145. CrossRefGoogle Scholar
  110. Verma SP, Sarkar B (2017) Rhamnolipid based micellar-enhanced ultrafiltration for simultaneous removal of Cd(II) and phenolic compound from wastewater. Chem Eng J 319:131–142. CrossRefGoogle Scholar
  111. Verma SP, Sarkar B (2018) Simultaneous removal of Cd (II) and p-cresol from wastewater by micellar-enhanced ultrafiltration using rhamnolipid: flux decline, adsorption kinetics and isotherm studies. J Environ Manag 213:217–235. CrossRefGoogle Scholar
  112. Víctor-Ortega MD, Martins RC, Gando-Ferreira LM, Quinta-Ferreira RM (2017) Recovery of phenolic compounds from wastewaters through micellar enhanced ultrafiltration. Colloids Surf A Physicochem Eng Asp. 531:18–24. CrossRefGoogle Scholar
  113. Wendler B, Goers B, Wozny G (2002) Nanofiltration of solutions containing surfactants—prediction of flux decline and modelling of mass transfer. Desalination. 147:217–221. CrossRefGoogle Scholar
  114. Woo SH, Min BR, Lee JS (2017) Change of surface morphology, permeate flux, surface roughness and water contact angle for membranes with similar physicochemical characteristics (except surface roughness) during microfiltration. Sep Purif Technol 187:274–284. CrossRefGoogle Scholar
  115. Xiarchos I, Doulia D (2006) Interaction behavior in ultrafiltration of nonionic surfactant micelles by adsorption. J Colloid Interface Sci. 299:102–111. CrossRefGoogle Scholar
  116. Xiarchos I, Doulia D, Gekas V, Tragardh G (2003) Polymeric ultrafiltration membranes and surfactants. Sep Purif Rev 32:215–278. CrossRefGoogle Scholar
  117. Yeom CK, Lee SH, Lee JM (2000) Effect of the ionic characteristics of charged membranes on the permeation of anionic solutes in reverse osmosis. J Membr Sci 169:237–247. CrossRefGoogle Scholar
  118. Yu S, Zhang X, Li F, Zhao X (2017) Influence of trace cobalt(II) on surfactant fouling of PVDF ultrafiltration membrane. Colloids Surf A Physicochem Eng Asp 518:130–138. CrossRefGoogle Scholar
  119. Zedel D, Drews A, Kraume M (2016) Retention of surfactants by organic solvent nanofiltration and influences on organic solvent flux. Sep Purif Technol 158:396–408. CrossRefGoogle Scholar
  120. Zedel D, Kraume M, Drews A (2017) Modelling and prediction of organic solvent flux and retention of surfactants by organic solvent nanofiltration. J Membr Sci 544:323–332. CrossRefGoogle Scholar
  121. Zhang R, Somasundaran P (2006) Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv Colloid Interface Sci 123-126:213–229. CrossRefGoogle Scholar
  122. Zhang WX, Huang GH, Wei J, Li HQ, Zheng RB, Zhou Y (2012) Removal of phenol from synthetic waste water using Gemini micellar-enhanced ultrafiltration (GMEUF). J Hazard Mater 235:128–137. CrossRefGoogle Scholar
  123. Zhang W, Liang W, Huang GH, Wei J, Ding L, Jaffrin MY (2015) Studies of membrane fouling mechanisms involved in the micellar-enhanced ultrafiltration using blocking models. RSC Adv 5:48484–48491. CrossRefGoogle Scholar
  124. Zhang W, Ding L, Zhang Z, Wei J, Jaffrin MY, Huang G (2016a) Threshold flux and limiting flux for micellar enhanced ultrafiltration as affected by feed water: experimental and modeling studies. J Clean Prod 112:1241–1251. CrossRefGoogle Scholar
  125. Zhang X, Wang Z, Chen M, Liu M, Wu Z (2016b) Polyvinylidene fluoride membrane blended with quaternary ammonium compound for enhancing anti-biofouling properties: effects of dosage. J Membr Sci 520:66–75. CrossRefGoogle Scholar
  126. Zhang X, Niu L, Li F, Zhao X, Hu H (2017) Enhanced rejection of cations by low-level cationic surfactant during ultrafiltration of low-level radioactive wastewater. Sep Purif Technol 175:314–320. CrossRefGoogle Scholar
  127. Zhu B, Gu T (1991) Surfactant adsorption at solid-liquid interfaces. Adv Colloid Interface Sci 37:1–32. CrossRefGoogle Scholar
  128. Zhu B, Gu T, Zhao X (1989) General isotherm equation for adsorption of surfactants at solid/liquid interfaces. Part 2. Applications. J Chem Soc Faraday Trans 85:3819–3824. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lixiu Shi
    • 1
    • 2
  • Jinhui Huang
    • 1
    • 2
    Email author
  • Guangming Zeng
    • 1
    • 2
    Email author
  • Lei Zhu
    • 1
    • 2
  • Yanling Gu
    • 1
    • 2
  • Yahui Shi
    • 1
    • 2
  • Kaixin Yi
    • 1
    • 2
  • Xue Li
    • 3
  1. 1.College of Environmental Science and EngineeringHunan UniversityChangshaChina
  2. 2.Key Laboratory of Environmental Biology and Pollution Control, Ministry of EducationHunan UniversityChangshaChina
  3. 3.Department of Bioengineering and Environmental ScienceChangsha UniversityChangshaChina

Personalised recommendations