Advertisement

Hospital wastewaters treatment: Fenton reaction vs. BDDE vs. ferrate(VI)

  • Tomáš Mackuľak
  • Roman Grabic
  • Viera Špalková
  • Noemi Belišová
  • Andrea ŠkulcováEmail author
  • Ondřej Slavík
  • Pavel Horký
  • Miroslav Gál
  • Jan Filip
  • Ján Híveš
  • Marian Vojs
  • Andrea Vojs Staňová
  • Alžbeta Medveďová
  • Marián Marton
  • Lucia Birošová
Research Article
  • 101 Downloads

Abstract

Various types of micropollutants, e.g., pharmaceuticals and their metabolites and resistant strains of pathogenic microorganisms, are usually found in hospital wastewaters. The aim of this paper was to study the presence of 74 frequently used pharmaceuticals, legal and illegal drugs, and antibiotic-resistant bacteria in 5 hospital wastewaters in Slovakia and Czechia and to compare the efficiency of several advanced oxidations processes (AOPs) for sanitation and treatment of such highly polluted wastewaters. The occurrence of micropollutants and antibiotic-resistant bacteria was investigated by in-line SPE-LC-MS/MS technique and cultivation on antibiotic and antibiotic-free selective diagnostic media, respectively. The highest maximum concentrations were found for cotinine (6700 ng/L), bisoprolol (5200 ng/L), metoprolol (2600 ng/L), tramadol (2400 ng/L), sulfamethoxazole (1500 ng/L), and ranitidine (1400 ng/L). In the second part of the study, different advanced oxidation processes, modified Fenton reaction, ferrate(VI), and oxidation by boron-doped diamond electrode were tested in order to eliminate the abovementioned pollutants. Obtained results indicate that the modified Fenton reaction and application of boron-doped diamond electrode were able to eliminate almost the whole spectrum of selected micropollutants with efficiency higher than 90%. All studied methods achieved complete removal of the antibiotic-resistant bacteria present in hospital wastewaters.

Keywords

Fenton-like reaction Boron-doped diamond electrode Ferrate(VI) Wastewater Antibiotic-resistant bacteria Hospital effluents characterization 

Notes

Acknowledgment

The authors would like to thank Elsevier for their editing services.

Funding information

This work was supported by the Slovak Research and Development Agency under the contracts No. APVV-17-0119, APVV-16- 0171, APVV-16-0124, and APVV-17-0183; Scientific Grant Agency of the Ministry of Education of the Slovak Republic (ME SR); and of Slovak Academy of Sciences (SAS) VEGA 1/0558/17 and VEGA 1/0343/19, by the Ministry of Education, Youth and Sports of the Czech Republic—project “CENAKVA” (LM2018099) and PROFISH (CZ.02.1.01/0.0/0.0/16_019/0000869). This work was supported by the European Regional Development Fund-Project “Centre for the investigation of synthesis and transformation of nutritional substances in the food chain in interaction with potentially harmful substances of anthropogenic origin: comprehensive assessment of soil contamination risks for the quality of agricultural products” (No. CZ.02.1.01/0.0/0.0/16_019/0000845). The authors also acknowledge support from the Technology Agency of the Czech Republic “Competence Centres” (TE01020218).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ajo P, Preis S, Vornamo T, Mänttäri M, Kallioinen M, Louhi-Kultanen M (2018) Hospital wastewater treatment with pilot-scale pulsed corona discharge for removal of pharmaceutical residues. J Environ Chem Eng 6:1569–1577.  https://doi.org/10.1016/j.jece.2018.02.007 CrossRefGoogle Scholar
  2. Al Qarni H, Collier P, O’Keeffe J, Akunna J (2016) Investigating the removal of some pharmaceutical compounds in hospital wastewater treatment plants operating in Saudi Arabia. Environ Sci Pollut R 23:13003–13014.  https://doi.org/10.1007/s11356-016-6389-7 CrossRefGoogle Scholar
  3. Aydin S, Aydin ME, Ulvi A, Kilic H (2019) Antibiotics in hospital effluents: occurrence, contribution to urban wastewater, removal in a wastewater treatment plant, and environmental risk assessment. Environ Sci Pollut R 26:544–558.  https://doi.org/10.1007/s11356-018-3563-0 CrossRefGoogle Scholar
  4. Brodin T, Fick J, Jonsson M, Klaminder J (2013) Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. Science 339:814–815.  https://doi.org/10.1126/science.1226850 CrossRefGoogle Scholar
  5. Czölderová M, Behúl M, Filip J, Zajíček P, Grabic R, Vojs-Staňová A, Gál M, Kerekeš K, Híveš J, Ryba J, Rybanská M, Brandeburová P, Mackuľak T (2018) 3D printed polyvinyl alcohol ferrate(VI) capsules: effective means for the removal of pharmaceuticals and illicit drugs from wastewater. Chem Eng J 349:269–275.  https://doi.org/10.1016/j.cej.2018.05.089 CrossRefGoogle Scholar
  6. Edwards AM, Massey RC (2011) How does Staphylococcus aureus escape the bloodstream? Trends Microbiol 19:184–190.  https://doi.org/10.1016/j.tim.2010.12.005 CrossRefGoogle Scholar
  7. Fabianska A, Bialk-Bielinska A, Stepnowski P, Stolte S, Siedlecka EM (2014) Electrochemical degradation of sulfonamides at BDD electrode: kinetics, reaction pathway and eco-toxicity evaluation. J Hazard Mater 280:579–587.  https://doi.org/10.1016/j.jhazmat.2014.08.050 CrossRefGoogle Scholar
  8. Fedorova G, Randak T, Lindberg RH, Grabic R (2013) Comparison of the quantitative performance of a Q-Exactive high-resolution mass spectrometer with that of a triple quadrupole tandem mass spectrometer for the analysis of illicit drugs in wastewater. Rapid Commun Mass Spectrom 27:1751–1762.  https://doi.org/10.1002/rcm.6628 CrossRefGoogle Scholar
  9. Fedorova G, Golovko O, Randak T, Grabic R (2014) Storage effect on the analysis of pharmaceuticals and personal care products in wastewater. Chemosphere 111:55–60.  https://doi.org/10.1016/j.chemosphere.2014.02.067 CrossRefGoogle Scholar
  10. Heberer T, Feldmann D (2005) Contribution of effluents from hospitals and private households to the total loads of diclofenac and carbamazepine in municipal sewage effluents - modeling versus measurements. J Hazard Mater 122:211–218.  https://doi.org/10.1016/j.jhazmat.2005.03.007 CrossRefGoogle Scholar
  11. Herrmann M, Olsson O, Fiehn R, Herrel M, Kummerer K (2015) The significance of different health institutions and their respective contributions of active pharmaceutical ingredients to wastewater. Environ Int 85:61–76CrossRefGoogle Scholar
  12. Huerta B, Jakimska A, Gros M, Rodriguez-Mozaz S, Barcelo D (2013) Analysis of multi-class pharmaceuticals in fish tissues by ultra-high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1288:63–72.  https://doi.org/10.1016/j.chroma.2013.03.001 CrossRefGoogle Scholar
  13. Jaén-Gil A, Castellet-Rovira F, Llorca M, Villagrasa M, Sarrà M, Rodríguez-Mozaz S, Barceló D (2019) Fungal treatment of metoprolol and its recalcitrant metabolite metoprolol acid in hospital wastewater: biotransformation, sorption and ecotoxicological impact. Water Res 152:171–180.  https://doi.org/10.1016/j.watres.2018.12.054 CrossRefGoogle Scholar
  14. Kanakaraju D, Glass BD, Oelgemoller M (2018) Advanced oxidation process-mediated removal of pharmaceuticals from water: a review. J Environ Manag 219:189–207.  https://doi.org/10.1016/j.jenvman.2018.04.103 CrossRefGoogle Scholar
  15. Karaolia P, Michael I, Garcia-Fernandez I, Aguera A, Malato S, Fernandez-Ibanez P, Fatta-Kassinos D (2014) Reduction of clarithromycin and sulfamethoxazole-resistant Enterococcus by pilot-scale solar-driven Fenton oxidation. Sci Total Environ 468:19–27CrossRefGoogle Scholar
  16. Kotyza J, Soudek P, Kafka Z, Vanek T (2009) Pharmaceuticals - new environmental pollutants. Chem Listy 103:540–547Google Scholar
  17. Kummerer K (2009) Antibiotics in the aquatic environment - a review - Part II. Chemosphere 75:435–441.  https://doi.org/10.1016/j.chemosphere.2008.12.006 CrossRefGoogle Scholar
  18. Lacorte S, Luis S, Gómez-Canela C, Sala-Comorera T, Courtier A, Roig B, Oliveira-Brett AM, Joannis-Cassan C, Aragonés JI, Poggio L, Noguer T, Lima L, Barata C, Calas-Blanchard C (2017) Pharmaceuticals released from senior residences: occurrence and risk evaluation. Environ Sci Pollut Res 25:6095–6106.  https://doi.org/10.1007/s11356-017-9755-1 CrossRefGoogle Scholar
  19. Li YF, Zhu GB, Ng WJ, Tan SK (2014) A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: design, performance and mechanism. Sci Total Environ 468:908–932.  https://doi.org/10.1016/j.scitotenv.2013.09.018 CrossRefGoogle Scholar
  20. Li C, Lu JJ, Liu J, Zhang GL, Tong YB, Ma N (2016) Exploring the correlations between antibiotics and antibiotic resistance genes in the wastewater treatment plants of hospitals in Xinjiang. China Environ Sci Pollut Res 23:15111–15121.  https://doi.org/10.1007/s11356-016-6688-z CrossRefGoogle Scholar
  21. Lien LT, Hoa NQ, Chuc NT, Thoa NT, Phuc HD, Diwan V, Dat NT, Tamhankar AJ, Lundborg CS (2016) Antibiotics in wastewater of a rural and an urban hospital before and after wastewater treatment, and the relationship with antibiotic use: a one year study from Vietnam. Int J Environ Res Public Health 13:588–601.  https://doi.org/10.3390/ijerph13060588 CrossRefGoogle Scholar
  22. Lin AYC, Wang XH, Lin CF (2010) Impact of wastewaters and hospital effluents on the occurrence of controlled substances in surface waters. Chemosphere 81:562–570.  https://doi.org/10.1016/j.chemosphere.2010.08.051 CrossRefGoogle Scholar
  23. Luja-Mondragón M, Gómez-Oliván LM, SanJuan-Reyes N, Islas-Flores H, Orozco-Hernández JM, Heredia-García G, Galar-Martínez M, Dublán-García O (2019) Alterations to embryonic development and teratogenic effects induced by a hospital effluent on Cyprinus carpio oocytes. Sci Total Environ 660:751–764.  https://doi.org/10.1016/j.scitotenv.2019.01.072 CrossRefGoogle Scholar
  24. Mackuľak T, Škubák J, Grabic R, Ryba J, Birošová L, Fedorova G, Spalkova V, Bodik I (2014) National study of illicit drug use in Slovakia based on wastewater analysis. Sci Total Environ 494:158–165.  https://doi.org/10.1016/j.scitotenv.2014.06.089 CrossRefGoogle Scholar
  25. Mackuľak T, Mosny M, Grabic R, Golovko O, Koba O, Birosova L (2015) Fenton-like reaction: a possible way to efficiently remove illicit drugs and pharmaceuticals from wastewater. Environ Toxicol Pharmacol 39:483–488.  https://doi.org/10.1016/j.etap.2014.12.016 CrossRefGoogle Scholar
  26. Mackulak T, Nagyova K, Faberova M, Grabic R, Koba O, Gal M, Birosova L (2015) Utilization of Fenton-like reaction for antibiotics and resistant bacteria elimination in different parts of WWTP. Environ Toxicol Pharmacol 40:492–497.  https://doi.org/10.1016/j.etap.2015.07.002 CrossRefGoogle Scholar
  27. Mackuľak T, Birošová L, Bodík I, Grabic R, Takáčová A, Smolinská M, Hanusová A, Híveš J, Gál M (2016a) Zerovalent iron and iron(VI): effective means for the removal of psychoactive pharmaceuticals and illicit drugs from wastewaters. Sci Total Environ 539:420–426CrossRefGoogle Scholar
  28. Mackuľak T, Vojs M, Grabic R, Golovko O, Staňová AV, Birošová L, Medveďová A, Híveš J, Gál M, Kromka A, Hanusová A (2016b) Occurrence of pharmaceuticals, illicit drugs, and resistant types of bacteria in hospital effluent and their effective degradation by boron-doped diamond electrodes. Monatsh Chem 147:97–103CrossRefGoogle Scholar
  29. Marton M, Michniak P, Behul M, Rehacek V, Vojs Stanova A, Redhammer R, Vojs M (2019) Bismuth modified boron doped diamond electrode for simultaneous determination of Zn, Cd and Pb ions by square wave anodic stripping voltammetry: influence of boron concentration and surface morphology. Vacuum 167:182–188.  https://doi.org/10.1016/j.vacuum.2019.06.012 CrossRefGoogle Scholar
  30. Mazzitelli JY, Budzinski H, Cachot J, Geffard O, Marty P, Chiffre A, François A, Bonnafe E, Geret F (2018) Evaluation of psychiatric hospital wastewater toxicity: what is its impact on aquatic organisms? Environ Sci Pollut Res Int 25:26090–26102.  https://doi.org/10.1007/s11356-018-2501-5 CrossRefGoogle Scholar
  31. Mhone TA, Matope G, Saidi PT (2011) Aerobic bacterial, coliform, Escherichia coli and Staphylococcus aureus counts of raw and processed milk from selected smallholder dairy farms of Zimbabwe. Int J Food Microbiol 151:223–228.  https://doi.org/10.1016/j.ijfoodmicro.2011.08.028 CrossRefGoogle Scholar
  32. Munoz M, Garcia-Munoz P, Pliego G, de Pedro ZM, Zazo JA, Casas JA, Rodriguez JJ (2016a) Application of intensified Fenton oxidation to the treatment of hospital wastewater: kinetics, ecotoxicity and disinfection. J Environ Chem Eng 4:4107–4112.  https://doi.org/10.1016/j.jece.2016.09.019 CrossRefGoogle Scholar
  33. Munoz M, Garcia-Muñoz P, Pliego G, Pedro ZM, Zazo JA, Casas JA, Rodriguez JJ (2016b) Application of intensified Fenton oxidation to the treatment of hospital wastewater: kinetics, ecotoxicity and disinfection. J Environ Chem Eng 4:4107–4112.  https://doi.org/10.1016/j.jece.2016.09.019 CrossRefGoogle Scholar
  34. Oliveira TS, Murphy M, Mendola N, Wong V, Carlson D, Waring L (2015) Characterization of pharmaceuticals and personal care products in hospital effluent and waste water influent/effluent by direct-injection LC-MS-MS. Sci Total Environ 518-519:459–478.  https://doi.org/10.1016/j.scitotenv.2015.02.104 CrossRefGoogle Scholar
  35. Oturan N, Wu J, Zhang H, Sharma VK, Oturan MA (2013) Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: effect of electrode materials. Appl Catal B Environ 140:92–97.  https://doi.org/10.1016/j.apcatb.2013.03.035 CrossRefGoogle Scholar
  36. Ouarda Y, Tiwari B, Azaïs A, Vaudreuil MA, Ndiaye SD, Drogui P, Tyagi RD, Sauvé S, Desrosiers M, Buelna G, Dubé R (2018) Synthetic hospital wastewater treatment by coupling submerged membrane bioreactor and electrochemical advanced oxidation process: kinetic study and toxicity assessment. Chemosphere 193:160–169.  https://doi.org/10.1016/j.chemosphere.2017.11.010 CrossRefGoogle Scholar
  37. Perez JF, Llanos J, Saez C, Lopez C, Canizares P, Rodrigo MA (2017) Treatment of real effluents from the pharmaceutical industry: a comparison between Fenton oxidation and conductive-diamond electro-oxidation. J Environ Manag 195:216–223.  https://doi.org/10.1016/j.jenvman.2016.08.009 CrossRefGoogle Scholar
  38. Petrovic M, Skrbic B, Zivancev J, Ferrando-Climent L, Barcelo D (2014) Determination of 81 pharmaceutical drugs by high performance liquid chromatography coupled to mass spectrometry with hybrid triple quadrupole-linear ion trap in different types of water in Serbia. Sci Total Environ 468:415–428CrossRefGoogle Scholar
  39. Reichert JF, Souza DM, Martins AF (2019) Antipsychotic drugs in hospital wastewater and a preliminary risk assessment. Ecotoxicol Environ Saf 170:559–567.  https://doi.org/10.1016/j.ecoenv.2018.12.021 CrossRefGoogle Scholar
  40. Ribeiro AR, Moreira NFF, Li Puma G, Silva AMT (2019) Impact of water matrix on the removal of micropollutants by advanced oxidation technologies. Chem Eng J 363:155–173.  https://doi.org/10.1016/j.cej.2019.01.080 CrossRefGoogle Scholar
  41. Saussereau E, Lacroix C, Guerbet M, Cellier D, Spiroux J, Goulle JP (2013) Determination of levels of current drugs in hospital and urban wastewater. B Environ Contam Toxicol 91:171–176.  https://doi.org/10.1007/s00128-013-1030-7 CrossRefGoogle Scholar
  42. Verlicchi P, Al Aukidy M, Galletti A, Petrovic M, Barcelo D (2012) Hospital effluent: investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Sci Total Environ 430:109–118.  https://doi.org/10.1016/j.scitotenv.2012.04.055 CrossRefGoogle Scholar
  43. Verlicchi P, Al Aukidy M, Zambello E (2015) What have we learned from worldwide experiences on the management and treatment of hospital effluent? - An overview and a discussion on perspectives. Sci Total Environ 514:467–491.  https://doi.org/10.1016/j.scitotenv.2015.02.020 CrossRefGoogle Scholar
  44. Villegas-Guzman P, Giannakis S, Torres-Palma RA, Pulgarin C (2017) Remarkable enhancement of bacterial inactivation in wastewater through promotion of solar photo-Fenton at near-neutral pH by natural organic acids. Appl Catal B Environ 205:219–227.  https://doi.org/10.1016/j.apcatb.2016.12.021 CrossRefGoogle Scholar
  45. Yang GCC, Tsai HJ, Chang FK (2015) Occurrence of triclosan in the tropical rivers receiving the effluents from the hospital wastewater treatment plant. Environ Monit Assess 187:151–158.  https://doi.org/10.1007/s10661-015-4372-2 CrossRefGoogle Scholar
  46. Yuan SL, Jiang XM, Xia XH, Zhang HX, Zheng SK (2013) Detection, occurrence and fate of 22 psychiatric pharmaceuticals in psychiatric hospital and municipal wastewater treatment plants in Beijing, China. Chemosphere 90:2520–2525.  https://doi.org/10.1016/j.chemosphere.2012.10.089 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tomáš Mackuľak
    • 1
  • Roman Grabic
    • 2
  • Viera Špalková
    • 1
  • Noemi Belišová
    • 1
  • Andrea Škulcová
    • 3
    • 4
    Email author
  • Ondřej Slavík
    • 3
  • Pavel Horký
    • 3
  • Miroslav Gál
    • 5
  • Jan Filip
    • 6
  • Ján Híveš
    • 5
  • Marian Vojs
    • 7
  • Andrea Vojs Staňová
    • 8
  • Alžbeta Medveďová
    • 9
  • Marián Marton
    • 7
  • Lucia Birošová
    • 9
  1. 1.Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislavaSlovakia
  2. 2.South Bohemian Research Centre of Aquaculture and Biodiversity of HydrocenosesFaculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske BudejoviceVodnanyCzech Republic
  3. 3.Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PraguePraha 6–SuchdolCzech Republic
  4. 4.Department of Wood, Pulp and Paper, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislavaSlovakia
  5. 5.Department of Inorganic Technology, Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislavaSlovakia
  6. 6.Regional Centre of Advanced Technologies and MaterialsOlomoucCzech Republic
  7. 7.Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information TechnologySlovak University of Technology in BratislavaBratislavaSlovakia
  8. 8.Department of Analytical Chemistry, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovakia
  9. 9.Institute of Food Science and Nutrition, Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislavaSlovakia

Personalised recommendations