Environmental Science and Pollution Research

, Volume 26, Issue 30, pp 30857–30865 | Cite as

Hemotoxic effects of some herbicides on juvenile of Nile tilapia Oreochromis niloticus

  • Mohamed Fathy
  • Ibrahim A. Mohamed
  • Ahmed I. A. Farghal
  • Sobhy A. H. Temerak
  • Alaa El-Din H. SayedEmail author
Research Article


Recently, the residues of some common and widely used herbicides (acetochlor, bispyribac-sodium, bentazon, bensulfuron-methyl, halosulfuron-methyl, and quinclorac) were detected in the surface water, soil, sediments, and fish tissues as the agricultural drainage problems. In this study, juveniles of Nile tilapia Oreochromis niloticus were exposed to sub-lethal concentrations of these herbicides as 2.625, 0.800, 36.00, 2.50, 1.275, and 11.250 mg/l for acetochlor, bispyribac-sodium, bentazon, bensulfuron-methyl, halosulfuron-methyl, and quinclorac respectively for 96 h. Some hemato-biochemical parameters were evaluated. In comparison with the control group, sub-lethal concentrations of all tested herbicides induced alterations in the shape of erythrocytes. Also, in all tested herbicides, hematological parameters of exposed fish exhibited a significant decrease in red blood cell count except bentazon. However, all tested herbicides showed an insignificant reduction in mean corpuscular hemoglobin concentration and total white blood cells except bensulfuron-methyl. For biochemical parameters, most tested herbicides induced a significant increase in levels of cholesterol, albumin, globulin, albumin/globulin ratio, activity of alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total plasma protein (only with acetochlor), urea, and creatinine (except bentazon and halosulfuron-methyl that exhibited non-significant decrease in creatinine level) compared with the control. In conclusion, the fish blood profiles can be used as good biomarkers for laboratory study to assess the toxicity of the tested rice herbicides at a sub-acute level especially acetochlor on O. niloticus.

Graphical Abstract


Oreochromis niloticus Herbicides Hematological Biochemical Pollution 



  1. Abbas HH, Authman MM, Abumourad IMK, El Badawi AA (2007) Studies on the effect of thiobencarb on herbicide on some biological, physiological, biochemical, histological, and genetic aspects of Nile tilapia. Orepchromis niloticus. Egypt J Aquat Biol & Fish 11:123–150Google Scholar
  2. AFS-FHS (2003) Suggested procedures for the detection and identification of certain finfish and shellfish pathogens, vol 5. American Fisheries Society, BethesdaGoogle Scholar
  3. Al-Sabti K, Metcalfe CD (1995) Fish micronuclei for assessing genotoxicity in water. Mutat Res 343:121–135Google Scholar
  4. Ashby J, Kier L, Wilson A, Green T, Lefevre PA, Tinwell H, Willis GA, Heydens WF, Clapp M (1996) Evaluation of the potential carcinogenicity and genetic toxicity to humans of the herbicide acetochlor. Hum Exp Toxicol 15:702–735Google Scholar
  5. Babatunde M, Oladimeji AA (2014) Comparative study of Acute toxicity of Paraquat and Galex to Oreochromis niloticus. IJAST 3:437–444Google Scholar
  6. Borges A, Scotti LV, Siqueira DR, Zanini R, Amaral FD, Jurinitz DF, Wassermann GF (2007) Changes in hematological and serum biochemical values in jundiá Rhamdia quelen due to sub-lethal toxicity of cypermethrin. Chemosphere 69:920–926Google Scholar
  7. Burgos-Aceves M, Barletta A, Faggio C (2019) Multidisciplinary haematology as prognostic device in environmental and xenobiotic stress-induced response in fish. Sci Total Environ 670:1170–1183Google Scholar
  8. Caldas S, Zanella R, Primel E (2010): Risk Estimate of Water Contamination and Occurrence of Pesticide in the South of Brazil. In: Andreas K (Editor), Herbicides and Environment. InTech, Rijeka, Croatia, pp. 471-492Google Scholar
  9. Costa R, Pereira J, Santos MA, Pacheco M, Guilherme S (2018) The role of contamination history and gender on the genotoxic responses of the crayfish Procambarus clarkii to a penoxsulam-based herbicide. Ecotoxicology 27:908–918Google Scholar
  10. Dornelles MF, Oliveira G (2015) Toxicity of atrazine, glyphosate, and quinclorac in bullfrog tadpoles exposed to concentrations below legal limits. Environ Sci Pollut Res Int 23:1610–1620Google Scholar
  11. Drishya MK, Kumari S, Kumar M, Ambikadevi AP, Aswin B (2016) Histopathological changes in the gills of fresh water fish, Catla catla exposed to electroplating effluent. Int J Fish Aquat Stud 5:13–16Google Scholar
  12. El-Sayed Y, Saad T (2008) Subacute Intoxication of a Deltamethrin-Based Preparation (Butox ® 5% EC) in Monosex Nile Tilapia, Oreochromis niloticus L. Basic Clin Pharmacol Toxicol 102:293–299Google Scholar
  13. Elalfy MM, Aboumosalam MS, Ali FR (2017) Biochemical, hematological and pathological effects of bispyribac sodium in female albino rats. J Vet Sci Technol 8:467Google Scholar
  14. Fazio F, Saoca C, Ferrantelli V, Cammilleri G, Capillo G, Piccione G (2019a) Relationship between arsenic accumulation in tissues and hematological parameters in mullet caught in Faro Lake: a preliminary study. Environ Sci Pollut Res Int 26:8821–8827Google Scholar
  15. Fazio F, Saoca C, Sanfilippo M, Capillo G, Spano N, Piccione G (2019b) Response of vanadium bioaccumulation in tissues of Mugil cephalus (Linnaeus 1758). Sci Total Environ 689:774–780Google Scholar
  16. Firat O, Cogun HY, Yuzereroglu TA, Gok G, Kargin F, Kotemen Y (2011) A comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus. Fish Physiol Biochem 37:657–666Google Scholar
  17. Gaafar A, Elmanakhly E, Soliman MK, Soufy H, Zaki MS, Mohamed SG, Hassan SM (2010) Some pathological, biochemical and hematological investigations on Nile tilapia ( Oreochromis niloticus ) following chronic exposure to edifenphos pesticide. J Am Sci 6:542–551Google Scholar
  18. Galal AAA, Reda RM, Abdel-Rahman Mohamed A (2018) Influences of Chlorella vulgaris dietary supplementation on growth performance, hematology, immune response and disease resistance in Oreochromis niloticus exposed to sub-lethal concentrations of penoxsulam herbicide. Fish & Shellfish Immunology 77:445–456Google Scholar
  19. George ADI, Akinrotimi OA, Nwokoma UK (2017) Haematological changes in African catfish (Clarias Gariepinus) exposed to mixture of atrazine and metolachlor in the laboratory. J Fish Sci com 11:048–054Google Scholar
  20. Guo Y, Meng X-Z, Tang H-L, Zeng EY (2008) Tissue distribution of organochlorine pesticides in fish collected from the Pearl River Delta, China: Implications for fishery input source and bioaccumulation. Environ Pollut 155:150–156Google Scholar
  21. Haluzova I, Blahová J, Smejkalova L, Kruzikova K, Havelkova M, Groch L, Modrá H, Slais M, Svobodova Z (2009) Effects of subchronic exposure to Successor 600 (pethoxamid 600 g L-1) on common carp Cyprinus carpio. Neuro Endocrinol Lett 30(Suppl 1):230–235Google Scholar
  22. Hamed M, Soliman HAM, Sayed AH (2019) Ameliorative effect of Spirulina platensis against lead nitrate-induced cytotoxicity and genotoxicity in catfish Clarias gariepinus. Environ Sci Pollut Res Int 26:20610–20618Google Scholar
  23. Hashemi RA, Jaddi Y, Ali Sadeghi M, Ghiamati S, Motazedi M (2017) Study of Toxicology Effects of Herbicide Paraquat on Heamatological Parameters of Mesopotamichthys sharpeyi. Open J Marine Sci 7:258–270Google Scholar
  24. Hassanein HMA, Banhawy MA, Soliman FM, Abdel-Rehim SA, Müller WE, Schröder HC (1999) Induction of HSP70 by the herbicide oxyfluorfen (Goal) in the Egyptian Nile Fish, Oreochromis niloticus. Arch Environ Contam Toxicol 37:78–84Google Scholar
  25. Heath AG (1995): Water pollution and fish physiology Lewis Publishers, Boca RatonGoogle Scholar
  26. Helbing CC, Ovaska K, Ji L (2006) Evaluation of the effect of acetochlor on thyroid hormone receptor gene expression in the brain and behavior of Rana catesbeiana tadpoles. Aquat Toxicol 80:42–51Google Scholar
  27. Hesser EF (1960) Methods for routine fish hematology. Progr Fish-Cult 22:164–171Google Scholar
  28. Iwama GK, Vijayan, MM, Morgan JD (2000): The stress response in fish. Icthyology, Recent research advances Oxford and IBH publishing Co, Pvt. Ltd, DelhiGoogle Scholar
  29. Jiraungkoorskul W, Upatham S, Kruatrachue M, Sahaphong S, Vichasri-Grams S, Pokethitiyook P (2003) Biochemical and histopathological effects of glyphosate herbicide on Nile tilapia (Oreochromis niloticus). ScienceAsia 18:260–267Google Scholar
  30. Kumar Maurya P, Malik DS, Kumar Yadav K, Gupta N, Kumar S (2019) Haematological and histological changes in fish Heteropneustes fossilis exposed to pesticides from industrial waste water. Human and Ecol Risk Assess: An International Journal 25:1251–1278Google Scholar
  31. Lajmanovich R, Junges C, Attademo A, Peltzer P, Cabagna M, Bassó A (2013) Individual and Mixture Toxicity of Commercial Formulations Containing Glyphosate, Metsulfuron-Methyl, Bispyribac-Sodium, and Picloram on Rhinella arenarum Tadpoles. Water Air Soil Pollut 224:1404Google Scholar
  32. Lawee AY, Imgbian TD, Auta J (2014) Sub-Lethal effects of basagran herbicide on some biochemical properties of an african freshwater catfish C.gariepinus (Teugels). Pat J 10:211–217Google Scholar
  33. Lawee AY, Imgbian TD (2017) Effect of sub-lethal concentations of bentazon pesticide in the growth performance and some hematological indices of juvenile Clarias gariepinus (Burchell 1822). J Fish Aquac 5:114–122Google Scholar
  34. Lee GR, Foerster J, Lukens J, Paraskevas F, Greer JP, Rodgers GM (1999) Wintrobe's clinical hematology 10th. Lippincort Williams and Wilkins, BethsedaGoogle Scholar
  35. Li W, Zha J, Li Z, Yang L, Wang Z (2009) Effects of exposure to acetochlor on the expression of thyroid hormone related genes in larval and adult rare minnow (Gobiocypris rarus). Aquat Toxicol 94:87–93Google Scholar
  36. Liu Y, Zhang Y, Liu J, Huang D (2006) The role of reactive oxygen species in the herbicide acetochlor-induced DNA damage on Bufo raddei tadpole liver. Aquat Toxicol 78:21–26Google Scholar
  37. Lusková V, Svoboda M, Kolářová J (2002) The Effect of Diazinon on Blood Plasma Biochemistry in Carp (Cyprinus carpio L.). Acta Vet Brno 71:117–123Google Scholar
  38. Lutnicka H, Bojarski B, Witeska M, Chmurska-Gąsowska M, Trybus W, Trybus E, Kopacz-Bednarska A, Lis M (2018) Effects of MCPA Herbicide on Hematological Parameters and Ultrastructure of Hematopoietic Tissues of Common Carp (Cyprinus carpio L). 66:1–11Google Scholar
  39. Mekkawy AA, Hussain SY, Ahmed SM (1996) Comparative studies on the effects of herbicide atrazine on some blood constituents and protein electrophoretic patterns of Oreochromis niloticus and Chrysichthyes auratus at Assiut. Egypt J Egypt Germ Soc Zool 19:283–319Google Scholar
  40. Mekkawy IA, Mahmoud UM, Sayed AH (2011) Effects of 4-nonylphenol on blood cells of the African catfish Clarias gariepinus (Burchell, 1822). Tissue Cell 43:223–229Google Scholar
  41. Mekkawy IA, Mahmoud UM, Hana MN, Sayed AH (2019) Cytotoxic and hemotoxic effects of silver nanoparticles on the African Catfish, Clarias gariepinus (Burchell, 1822). Ecotoxicol Environ Saf 171:638–646Google Scholar
  42. Menezes C, Ruiz-Jarabo I, Martos-Sitcha JA, Leitemperger J, Baldisserotto B, Mancera JM, Rosemberg DB, Loro VL (2014) Diet with diphenyl diselenide mitigates quinclorac toxicity in silver catfish (Rhamdia quelen). PLoS One 9:e114233Google Scholar
  43. Murussi CR, Thorstenberg ML, Leitemperger J, Costa M, Clasen B, Santi A, Menezes C, Engers VK, Loro VL (2014) Toxic Effects of Penoxsulam Herbicide in Two Fish Species Reared in Southern Brazil. Bull Environ Contam Toxicol 92:81–84Google Scholar
  44. Pereira L, Fernandes M, Martinez C (2013) Hematological and biochemical alterations in the fish Prochilodus lineatus caused by the herbicide clomazone. Environ Toxicol Pharmacol 36:1–8Google Scholar
  45. Pretto A, Loro VL, Menezes C, Silveira Moraes B, Boschmann Reimche G, Zanella R, de Ávila LA (2011) Commercial formulation containing quinclorac and metsulfuron-methyl herbicides inhibit acetylcholinesterase and induce biochemical alterations in tissues of Leporinus obtusidens. Ecotoxicol Environ Saf 74:336–341Google Scholar
  46. Rao KRS (1999): Pesticide Impact on Fish Metabolism (Discovery Publishing House, DelhiGoogle Scholar
  47. Sana U, Zorriehzahra MJ (2015) Ecotoxicology: a review of pesticides induced toxicity in fish. Adv Anim Vet Sci 3:40–57Google Scholar
  48. Sayed AH, Zaki RM, El-Dean AMK, Abdulrazzaq AY (2015) The biological activity of new thieno[2,3-c]pyrazole compounds as anti-oxidants against toxicity of 4-nonylphenol in Clarias gariepinus. Toxicol Rep 2:1445–1453Google Scholar
  49. Sayed AH, Ismail RFK (2017) Endocrine disruption, oxidative stress, and testicular damage induced by 4-nonylphenol in Clarias gariepinus: the protective role of Cydonia oblonga. Fish Physiol Biochem 43:1095–1104Google Scholar
  50. Sayed AH, Soliman HAM (2018) Modulatory effects of green tea extract against the hepatotoxic effects of 4-nonylphenol in catfish (Clarias gariepinus). Ecotoxicol Environ Saf 149:159–165Google Scholar
  51. Schmitt CJ, Caldwell CA, Olsen B, Serdar D, Coffey M (2002) Inhibition of erythrocyte δ-aminolevulinic acid dehydratase (ALAD) activity in fish from waters affected by lead smelters. Environ Monit Assess 77:99–119Google Scholar
  52. Singh NN, Srivastava AK (2010) Haematological parameters as bioindicators of insecticide exposure in teleosts. Ecotoxicology 19:838–854Google Scholar
  53. Sparling D, Fellers G, McConnell LL (2001) Pesticides and amphibian population declines in California. USA 20:1591–1595Google Scholar
  54. Stevens ML (1997) Fundamentals of clinical hematology. Saunders Philadelphia, PhiladelphiaGoogle Scholar
  55. Sweilum MA (2006) Effect of sublethal toxicity of some pesticides on growth parameters, haematological properties and total production of Nile tilapia (Oreochromis niloticus L.) and water quality of ponds. Aquac Res 37:1079–1089Google Scholar
  56. Toni C, de Menezes CC, Loro VL, Clasen BE, Cattaneo R, Santi A, Pretto A, Zanella R, Leitemperger J (2010) Oxidative stress biomarkers in Cyprinus carpio exposed to commercial herbicide bispyribac-sodium. J Appl Toxicol 30:590–595Google Scholar
  57. Upadhyay A, Pandya P, Parikh PH (2014) Acute exposure of Pyrazosulfuron Ethyl induced Haematological and Blood Biochemical changes in the Freshwater Teleost fish Oreochromis mossambicus. High Perform Benchtop WDXRF 1, 79:–86Google Scholar
  58. Velisek J, Svobodova Z, Piackova V, Sudova E (2009) Effects of Acute Exposure to Metribuzin on Some Hematological, Biochemical and Histopathological Parameters of Common Carp (Cyprinus carpio L.). Bull Environ Contam Toxicol 82:492–495Google Scholar
  59. Yaji A, Iheanacho S, Ogueji O (2018) Sublethal Exposure and Toxicity Effect of Propanil on Hematology and Serum Biochemistry in Oreochromis niloticus in a Static Bioassay. High Perform Benchtop WDXRF 31:1048–1062Google Scholar
  60. Yang M, Hu J, Li S, Ma Y, Gui W, Zhu G (2015) Thyroid endocrine disruption of acetochlor on zebrafish (Danio rerio) larvae. J Appl Toxicol 36:844–852Google Scholar
  61. Yu J, Xu EG, Ren Y, Jin S, Zhang T, Liu J, Li Z (2017) Mixture Toxicity of Bensulfuron-Methyl and Acetochlor to Red Swamp Crayfish (Procambarus clarkii): Behavioral, Morphological and Histological Effects. Int J Environ Res Public Health 14:E1466Google Scholar
  62. Zhang H, Zhao L (2017) Influence of sublethal doses of acetamiprid and halosulfuron-methyl on metabolites of zebra fish ( Brachydanio rerio ). Aquat Toxicol 191:85–94Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Plant Protection Department, Faculty of AgricultureAssiut UniversityAssiutEgypt
  2. 2.Zoology Department, Faculty of SciencesAssiut UniversityAssiutEgypt

Personalised recommendations