Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 30, pp 31142–31157 | Cite as

Organotin compounds in touristic marinas of the northern Adriatic Sea: occurrence, speciation and potential recycling at the sediment-water interface

  • Malgorzata M. Formalewicz
  • Federico Rampazzo
  • Seta Noventa
  • Claudia Gion
  • Elisa Petranich
  • Matteo Crosera
  • Stefano Covelli
  • Jadran Faganeli
  • Daniela BertoEmail author
Research Article
  • 113 Downloads

Abstract

Butyltin compound (BTC) contamination was evaluated in two north Adriatic marinas, San Rocco (Italy) and Lucija (Slovenia). BTC sedimentary concentrations (121 ± 46 and 352 ± 30 ng Sn g−1 in San Rocco and Lucija, respectively) evidenced the past use of antifouling paints, confirmed by the reduced tributyltin content (~ 46%) with respect to the sum of BTC. Elemental and organic carbon isotopic (δ13C) analyses of bulk sediments and its lipid and humic substances were performed in order to evaluate their role in BTC partitioning and preservation. The δ13C of sedimentary bulk and refractory organic matter suggested that diagenetic processes could play a role in the preservation or release of pollutants. No contamination was found in water collected from the benthic chamber and thus, fluxes at the sediment-water interface were not assessed, except for MBT efflux at Lucija (28.9 ng Sn m−2 day−1). Nevertheless, BTC concentrations in porewaters (up to 75 ng Sn l−1) and rather low sediment-porewater partitioning coefficients (Kd) with respect to the data reported in the literature would suggest a potential risk of the reintroduction of BTC into the water column at both sites: at Lucija, sedimentary contamination is high despite the greater Log Kd, whilst at San Rocco, the low BTC concentration is associated with a reduced sediment affinity.

Keywords

Tributyltin Organic matter Humic acids Isotopic signature Contamination Porewaters 

Notes

Acknowledgements

A special thanks to Karry Close for proofreading the manuscript. We are grateful to the management of the Portorož and Porto San Rocco marinas for their availability and hospitality.

Funding information

The research activity was partially supported by the University of Trieste (Finanziamento di Ateneo per progetti di ricerca scientifica - FRA 2014, ref. Stefano Covelli).

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Abraham M, Westphal L, Hand I, Lerz A, Jeschek J, Bunke D, Leipe T, Schulz-Bull D (2017) TBT and its metabolites in sediments: survey at a German coastal site and the central Baltic Sea. Mar Pollut Bull 121:404–410.  https://doi.org/10.1016/j.marpolbul.2017.06.020 CrossRefGoogle Scholar
  2. Adami G, Barbieri P, Piselli S, Predonzani S, Reisenhofer E (2000) Detecting and characterising sources of persistent organic pollutants (PAHs and PCBs) in surface sediments of an industrialized area (harbor of Trieste, northern Adriatic Sea). J Environ Monit 2:261–265.  https://doi.org/10.1039/b000995o CrossRefGoogle Scholar
  3. Alzieu C (1998) Tributyltin: case study of a chronic contaminant in the coastal environment. Ocean Coast Manag 40:23–36.  https://doi.org/10.1016/S0964-5691(98)00036-2 CrossRefGoogle Scholar
  4. Alzieu C (2000) Environmental impact of TBT: the French experience. Sci Total Environ 258:99–102.  https://doi.org/10.1016/S0048-9697(00)00510-6 CrossRefGoogle Scholar
  5. Alzieu C, Michel P (1998) L’étain et les organoétains en milieu marine: biogéochimie et écotoxicologie. Editions QuaeGoogle Scholar
  6. Anastasiou TI, Chatzinikolaou E, Mandalakis M, Arvanitidis C (2016) Imposex and organotin compounds in ports of the Mediterranean and the Atlantic: is the storyover? Sci Total Environ 569-570:1315–1329.  https://doi.org/10.1016/j.scitotenv.2016.06.209 CrossRefGoogle Scholar
  7. Antizar-Ladislao B (2008) Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environ Int 34:292–308.  https://doi.org/10.1016/j.envint.2007.09.005 CrossRefGoogle Scholar
  8. Batista RM, Castro IB, Fillmann G (2016) Imposex and butyltin contamination still evident in Chile after TBT global ban. Sci Total Environ 566–567:446–453.  https://doi.org/10.1016/j.scitotenv.2016.05.039 CrossRefGoogle Scholar
  9. Batista-Andrade JA, Souza CS, Batista RM, Castro IB, Fillmann G, Primel EG (2018) From TBT to booster biocides: levels and impacts of antifouling along coastal areas of Panama. Environ Pollut 234:243–252.  https://doi.org/10.1016/j.envpol.2017.11.063 CrossRefGoogle Scholar
  10. Berg M, Arnold CG, Müller SR, Mühlemann J, Schwarzenbach RP (2001) Sorption and desorption behavior of organotin compounds in sediment-pore water systems. Environ Sci Technol 35:3151–3157.  https://doi.org/10.1021/es010010f CrossRefGoogle Scholar
  11. Berto D, Giani M, Boscolo R, Covelli S, Giovanardi O, Massironi M, Grassia L (2007) Organotins (TBT and DBT) in water, sediments, and gastropods of the southern Venice lagoon (Italy). Mar Pollut Bull 55:425–435.  https://doi.org/10.1016/j.marpolbul.2007.09.005 CrossRefGoogle Scholar
  12. Binato G, Biancotto G, Piro R, Angeletti R (1998) Atomic absorption spectrometric screening and gas chromatographic-mass spectrometric determination of organotin compounds in marine mussel: an application in samples from the Venetian Lagoon. Fresenius J Anal Chem 361:333–337.  https://doi.org/10.1007/s002160050898 CrossRefGoogle Scholar
  13. Boudreau BP (1999) Metals and models: diagenetic modelling in freshwater lacustrine sediments. J Paleolimnol 22:227–251.  https://doi.org/10.1023/A:1008144029134 CrossRefGoogle Scholar
  14. Brebbia CA, Tiezzi E, Conti ME (2007) Management of natural resources, sustainable development and ecological hazards. Wit Press, Southampton, p 837Google Scholar
  15. Briant N, Bancon-Montigny C, Elbaz-Poulichet F, Freydier R, Delpoux S, Cossa D (2013) Trace elements in the sediments of a large Mediterranean marina (Port Camargue, France): levels and contamination history. Mar Pollut Bull 73:78–85.  https://doi.org/10.1016/j.marpolbul.2013.05.038 CrossRefGoogle Scholar
  16. Bryan GW, Gibbs PE, Hummerstone LG, Burt GR (1986) The decline of the gastropod Nucella lapillus around South-West England: evidence for the effect of tributyltin from antifouling paints. J Mar Biol Assoc UK 66(3):611–640.  https://doi.org/10.1017/S0025315400042247 CrossRefGoogle Scholar
  17. Buggy CJ, Tobin JM (2006) Seasonal and spatial distributions of tributyltin in surface sediment of the Tolka Estuary, Dublin, Ireland. Environ Pollut 143:294–303.  https://doi.org/10.1016/j.envpol.2005.11.025 CrossRefGoogle Scholar
  18. Calace N, Petronio BM, Persia S, Pietroletti M, Pacioni D (2007) A new analytical approach for humin determination in sediments and soils. Talanta 71:1444–1448.  https://doi.org/10.1016/j.talanta.2006.06.040 CrossRefGoogle Scholar
  19. Castro IB, Arroyo MF, Costa PG, Fillmann G (2011) Butyltin compounds and imposex levels in Ecuador. Arch Environ Contam Toxicol 62:68–77.  https://doi.org/10.1007/s00244-011-9670-2 CrossRefGoogle Scholar
  20. Champ MA (2000) A review of organotin regulatory strategies, pending actions, related costs and benefits. Sci Total Environ 258:21–71.  https://doi.org/10.1016/S0048-9697(00)00506-4 CrossRefGoogle Scholar
  21. Chau YK, Zhang S, Maguire RJ (1992) Occurrence of butyltin species in sewage and sludge in Canada. Sci Total Environ 121:271–281.  https://doi.org/10.1016/0048-9697(92)90320-R CrossRefGoogle Scholar
  22. Chen Z, Chen L, Chen C, Huang Q, Wu L, Zhang W (2017) Organotin contamination in sediments and aquatic organisms from the Yangtze Estuary and adjacent marine environments. Environ Eng Sci 34(4):227–235.  https://doi.org/10.1089/ees.2016.0370 CrossRefGoogle Scholar
  23. Choi M, Choi H-G, Moon H-B, Kim G-Y (2009) Spatial and temporal distribution of tributyltin (TBT) in seawater, sediments and bivalves from coastal areas of Korea during 2001-2005. Environ Monit Assess 151:301–310.  https://doi.org/10.1007/s10661-008-0271-0 CrossRefGoogle Scholar
  24. Cibic T, Franzo A, Nasi F, Auriemma R, Del Negro P (2017) The port of Trieste (northern Adriatic Sea) - a case study of the “ecosystem approach to management”. Front Mar Sci 4:336.  https://doi.org/10.3389/fmars.2017.00336 CrossRefGoogle Scholar
  25. Covelli S, Horvat M, Faganeli J, Brambati A (1999) Porewater distribution and benthic flux of mercury and methylmercury in the Gulf of Trieste (northern Adriatic Sea). Estuar Coast Shelf Sci 48:415–428.  https://doi.org/10.1006/ecss.1999.0466 CrossRefGoogle Scholar
  26. Díez S, Ábalos M, Bayona JM (2002) Organotin contamination in sediments from the Western Mediterranean enclosures following 10 years of TBT regulation. Water Res 36:905–918.  https://doi.org/10.1016/S0043-1354(01)00305-0 CrossRefGoogle Scholar
  27. Diez S, Jover E, Albaiges J, Bayona JM (2006) Occurrence and degradation of butyltins and wastewater marker compounds in sediments from Barcelona harbor, Spain. Environ Int 32:858–865.  https://doi.org/10.1016/j.envint.2006.05.004 CrossRefGoogle Scholar
  28. Directive 2000/60/EC of the European Parliament and of the Council of the 23 October 2000 establishing a frame-work for Community action in the field of water policy. Official Journal L 327, 22 Dec. 2000Google Scholar
  29. Dowson P.H., Bubb J.M., Williams T. P, Lester J.N., 1993. Degradation of tributyltin in freshwater and estuarine marina sediments. Water Sci Technol 28 (8-9), 133-137.  https://doi.org/10.2166/wst.1993.0611
  30. Dowson PH, Bubb JM, Lester JN (1996) Persistence and degradation pathways of tributyltin in freshwater and estuarine sediments. Estuar Coast Shelf Sci 42:551–562.  https://doi.org/10.1006/ecss.1996.0036 CrossRefGoogle Scholar
  31. Eggleton J, Thomas KV (2004) A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ Int 30:973–980.  https://doi.org/10.1016/j.envint.2004.03.001 CrossRefGoogle Scholar
  32. Emili A, Acquavita A, Covelli S, Spada L, Di Leo A, Giandomenico S, Cardellicchio N (2016) Mobility of heavy metals from polluted sediments of a semi-enclosed basin: in situ benthic chamber experiments in Taranto’s Mar Piccolo (Ionian Sea, Southern Italy). Environ Sci Pollut Res 23:12582–12595.  https://doi.org/10.1007/s11356-015-5281-1 CrossRefGoogle Scholar
  33. European Directive 2013/39/EU, 2013. European Directive 2013/39/EU of the European Parliament and of the council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water PolicyGoogle Scholar
  34. Filipkowska A, Kowalewska G, Pavoni B, Łęczyński L (2011) Organotin compounds in surface sediments from seaports on the Gulf of Gdańsk (southern Baltic coast). Environ Monit Assess 182:455–466.  https://doi.org/10.1007/s10661-011-1889-x CrossRefGoogle Scholar
  35. Filipkowska A, Kowalewska G, Pavoni B (2014) Organotin compounds in surface sediments of the Southern Baltic coastal zone: a study on the main factors for their accumulation and degradation. Environ Sci Pollut Res 21:2077–2087.  https://doi.org/10.1007/s11356-013-2115-x CrossRefGoogle Scholar
  36. Filipkowska A, Lubecki L, Szymczak-Żyła M, Ciesielski TM, Jenssen BM, Ardelan MV, Mazur-Marzec H, Breedveld GD, Oen AMP, Zamojska A, Kowalewska G (2018) Anthropogenic impact on marine ecosystem health: a comparative multiproxy investigation of recent sediments in coastal waters. Mar Pollut Bull 133:328–335.  https://doi.org/10.1016/j.marpolbul.2018.05.058 CrossRefGoogle Scholar
  37. Furdek M, Mikac N, Bueno M, Tessier E, Cavalheiro J, Monperrus M (2016) Organotin persistence in contaminated marine sediments and porewaters: in situ degradation study using species-specific stable isotopic tracers. J Hazard Mater 307:263–273.  https://doi.org/10.1016/j.jhazmat.2015.12.037 CrossRefGoogle Scholar
  38. Gellner E, Valenti P (2005) San Rocco. Storia di un cantiere navale. Luglio editore 196 pp (in Italian)Google Scholar
  39. Giani M, Berto D, Rampazzo F, Savelli F, Alvisi F, Giordano P, Ravaioli M, Frascari F (2009) Origin of sedimentary organic matter in the north-western Adriatic Sea. Estuar Coast Shelf Sci 84:573–583.  https://doi.org/10.1016/j.ecss.2009.07.031 CrossRefGoogle Scholar
  40. Giani M, Rampazzo F, Berto D (2010) Humic acids contribution to sedimentary organic matter on a shallow continental shelf (northern Adriatic Sea). Estuar Coast Shelf Sci 90:103–110.  https://doi.org/10.1016/j.ecss.2010.07.006 CrossRefGoogle Scholar
  41. Giurastante R (2010) Tracce di legalità. Autorinediti, Napoli 536 pp (in Italian)Google Scholar
  42. Hamer K, Karius V (2005) Tributyltin release from harbour sediments. Modelling the influence of sedimentation, bio-irrigation and diffusion using data from Bremerhaven. Mar Pollut Bull 50:980–992.  https://doi.org/10.1016/j.marpolbul.2005.04.007 CrossRefGoogle Scholar
  43. Harino H, Yamamoto Y, Eguchi S, Kawai S, Kurokawa Y, Arai T, Ohji M, Okamura H, Miyazaki N (2007) Concentrations of antifouling biocides in sediment and mussel samples collected from Otsuchi Bay, Japan. Arch Environ Contam Toxicol 52:179–188.  https://doi.org/10.1007/s00244-006-0087-2 CrossRefGoogle Scholar
  44. Hartwell SI, Apeti DA, Mason AL, Pait AS (2016) An assessment of butyltins and metals in sediment cores from the St. Thomas East End Reserves, USVI. Environ Monit Assess 188:642.  https://doi.org/10.1007/s10661-016-5596-5 CrossRefGoogle Scholar
  45. Hayes MHB, Mylotte R, Swift RS (2017) Humin: its composition and importance in soil organic matter. Adv Agron 143:47–138.  https://doi.org/10.1016/bs.agron.2017.01.001 CrossRefGoogle Scholar
  46. Hedges JI, Stern JH (1984) Carbon and nitrogen determinations of carbonate-containing solids. Limnol Oceanogr 29:657–663.  https://doi.org/10.4319/lo.1984.29.3.0657 CrossRefGoogle Scholar
  47. Hoch M (2001) Organotin compounds in the environment - an overview. Appl Geochem 16:719–743.  https://doi.org/10.1016/S0883-2927(00)00067-6 CrossRefGoogle Scholar
  48. Hoch M, Schwesig D (2004) Parameters controlling the partitioning of tributyltin (TBT) in aquatic systems. Appl Geochem 19:323–334.  https://doi.org/10.1016/S0883-2927(03)00131-8 CrossRefGoogle Scholar
  49. Hoch M, Alonso-Azcarate J, Lischick M (2003) Assessment of adsorption behavior of dibutyltin (DBT) to clay-rich sediments in comparison to the highly toxic tributyltin (TBT). Environ Pollut 123:217–227.  https://doi.org/10.1016/S0269-7491(02)00402-5 CrossRefGoogle Scholar
  50. IMO (International Maritime Organization) (2001) International Convention on the Control of Harmful Antifouling Systems on Ships, International Maritime Organization, London. UK 2001Google Scholar
  51. Italian Legislative Decree 13 ottobre 2015, n. 172. Attuazione della direttiva 2013/39/UE, che modifica le direttive 2000/60/CE per quanto riguarda le sostanze prioritarie nel settore della politica delle acque (Gazzetta Ufficiale Serie Generale n. 250 del 27-10-2015)Google Scholar
  52. Jones MRL, Ross PM (2018) Recovery of the New Zealand muricid dogwhelk Haustrum scobina from TBT-induced imposex. Mar Pollut Bull 126:396–401.  https://doi.org/10.1016/j.marpolbul.2017.11.034 CrossRefGoogle Scholar
  53. Kim NS, Shim WJ, Yim UH, Hong SH, Ha SY, Han GM, Shin K-H (2014a) Assessment of TBT and organic booster biocide contamination in seawater from coastal areas of South Korea. Mar Pollut Bull 78:201–208.  https://doi.org/10.1016/j.marpolbul.2013.10.043 CrossRefGoogle Scholar
  54. Kim NS, Hong SH, Yim UH, Shin K-H, Shim WJ (2014b) Temporal changes in TBT pollution in water, sediment, and oyster from Jinhae Bay after the total ban in South Korea. Mar Pollut Bull 86:547–554.  https://doi.org/10.1016/j.marpolbul.2014.06.035 CrossRefGoogle Scholar
  55. Langston WJ, Pope ND (1995) Determinants of TBT Adsorption and Desorption in Estuarine Sediments. Mar Pollut Bull 31(1-3):32–43.  https://doi.org/10.1016/0025-326X(95)91269-M CrossRefGoogle Scholar
  56. Laranjeiro F, Sánchez-Marín P, Benta OI, Galante-Oliveira S, Barroso C (2017) Fifteen years of imposex and tributyltin pollution monitoring along the Portuguese coast. Environ Pollut 232:411–421.  https://doi.org/10.1016/j.envpol.2017.09.056 CrossRefGoogle Scholar
  57. Law RJ, Bolam T, James D, Barry J, Deaville R, Reid RJ, Penrose R, Jepson PD (2012) Butyltin compounds in liver of harbour porpoises (Phocoena phocoena) from the UK prior to and following the ban on the use of tributyltin in antifouling paints (1992-2005 & 2009). Mar Pollut Bull 64:2576–2580.  https://doi.org/10.1016/j.marpolbul.2012.07.014 CrossRefGoogle Scholar
  58. Lehmann MF, Bernasconi SM, Barbieri A, McKenzie JA (2002) Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim Cosmochim Acta 66(20):3573–3584.  https://doi.org/10.1016/S0016-7037(02)00968-7 CrossRefGoogle Scholar
  59. Li Y-H, Gregory S (1974) Diffusion of ions in sea water and in deep-sea sediments. Geochim Cosmochim Acta 38(5):703–714.  https://doi.org/10.1016/0016-7037(74)90145-8 CrossRefGoogle Scholar
  60. Maciel DC, Castro IB, Botelho de Souza JR, Yogui GT, Fillmann G, Zanardi-Lamardo E (2018) Assessment of organotins and imposex in two estuaries of the northeastern Brazilian coast. Mar Pollut Bull 126:473–478.  https://doi.org/10.1016/j.marpolbul.2017.11.061 CrossRefGoogle Scholar
  61. Malačič V, Petelin B (2009) Climatic circulation in the Gulf of Trieste (northern Adriatic). J Geophys Res Oceans 114:C07002.  https://doi.org/10.1029/2008JC004904 CrossRefGoogle Scholar
  62. Marocco R (1989) Lineamenti geomorfologici della costa e dei fondali del Golfo di Trieste e considerazioni sulla loro evoluzione tardo-quaternaria. Int J Speleol 18:87–110CrossRefGoogle Scholar
  63. Mayer LM (1994) Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chem Geol 114:347–363.  https://doi.org/10.1016/0009-2541(94)90063-9 CrossRefGoogle Scholar
  64. Morabito R, Chiavarini S, Cremisini C (1995) Speciation of organotin compounds in environmental samples by GC-MS. In: Quevauviller P, Maier EA, Griepink B (eds) Quality Assurance for Environmental Analysis, Cap. 17. Elsevier, Amsterdam, pp 435–464Google Scholar
  65. Nemanič TM, Leskovsek H, Horvat M, Vrišer B, Bolje A (2002) Organotin compounds in the marine environment of the Bay of Piran, Northern Adriatic Sea. J Environ Monit 4:426–430.  https://doi.org/10.1039/b111582k CrossRefGoogle Scholar
  66. Nieuwenhuize J, Maas YEM, Middelburg JJ (1994) Rapid analysis of organic carbon and nitrogen in particulate materials. Mar Chem 45:217–224.  https://doi.org/10.1039/b111582k CrossRefGoogle Scholar
  67. Nissenbaum A, Kaplan IR (1972) Chemical and isotopic evidence for the in situ origin of marine humic substances. Limnol Oceanogr 17(4):570–582CrossRefGoogle Scholar
  68. Noventa S, Barbaro J, Formalewicz M, Gion C, Rampazzo F, Boscolo BR, Gabellini M, Berto D (2015) A fast and effective routine method based on HS-SPME-GC-MS/MS for the analysis of organotin compounds in biota samples. Anal Chim Acta 858:66–73.  https://doi.org/10.1016/j.aca.2014.11.028 CrossRefGoogle Scholar
  69. O’Loughlin EJ, Traina SJ, Chin Y-P (2000) Association of organotin compounds with aquatic and terrestrial humic substances. Environ Toxicol Chem 19(8):2015–2021.  https://doi.org/10.1002/etc.5620190809 CrossRefGoogle Scholar
  70. O’Sullivan PE, Reynolds CS (2004) The lakes handbook: lymnology and lymnetic ecology, vol 1. Blackwell Publishing, Hoboken, p 632Google Scholar
  71. Oehlmann J, Fioroni P, Stroben E, Markert B (1996) Tributyltin (TBT) effects on Ocinebrina aciculata (Gastropoda: Muricidae): imposex development, sterilization, sex change and population decline. Sci Total Environ 188(2-3):205–223.  https://doi.org/10.1016/0048-9697(96)05173-X CrossRefGoogle Scholar
  72. Ogorelec B, Mišič M, Faganeli J (1991) Marine geology of the Gulf of Trieste (northern Adriatic): sedimentological aspects. Mar Geol 99:79–92.  https://doi.org/10.1016/0025-3227(91)90084-H CrossRefGoogle Scholar
  73. Ogrinc N, Fontolan G, Faganeli J, Stefano CS (2005) Carbon and nitrogen isotope compositions of organic matter in coastal marine sediments (the Gulf of Trieste, N Adriatic Sea): indicators of sources and preservation. Mar Chem 95:163–181.  https://doi.org/10.1016/j.marchem.2004.09.003 CrossRefGoogle Scholar
  74. Olivotti R, Faganeli J, Malej A (1986) Impact of organic pollutants on coastal waters, Gulf of Trieste. Water Sci Technol 18:57–68.  https://doi.org/10.2166/wst.1986.0078 CrossRefGoogle Scholar
  75. Omae I (2003) Organotin antifouling paints and their alternatives. Appl. Organometal. Chem.17, 81-105.  https://doi.org/10.1002/aoc.396
  76. Parrish CC, Abrajano TA, Budge SM, Helleur RJ, Hudson ED, Pulchan K, Ramos C (2000) Lipid and Phenolic biomarkers in marine ecosystems: analysis and applications. In: Wangersky PJ (ed) Marine Chemistry. The Handbook of Environmental Chemistry (Vol. 5 Series: Water Pollution), vol 5D. Springer, Berlin, HeidelbergGoogle Scholar
  77. Paz-Villarraga CA, Castro IB, Miloslavich P, Fillmann G (2015) Venezuelan Caribbean Sea under the threat of TBT. Chemosphere 119:704–710.  https://doi.org/10.1016/j.chemosphere.2014.07.068 CrossRefGoogle Scholar
  78. Petranich E, Covelli S, Acquavita A, De Vittor C, Faganeli J, Contin M (2018a) Benthic nutrient cycling at the sediment-water interface in a lagoon fish farming system (northern Adriatic Sea, Italy). Sci Total Environ 644:137–149.  https://doi.org/10.1016/j.scitotenv.2018.06.310 CrossRefGoogle Scholar
  79. Petranich E, Croce S, Crosera M, Pavoni E, Faganeli J, Adami G, Covelli S (2018b) Mobility of metal(loid) s at the sediment-water interface in two tourist port areas of the Gulf of Trieste (northern Adriatic Sea). Environ Sci Pollut Res 25(27):26887–26902.  https://doi.org/10.1007/s11356-018-2717-4 CrossRefGoogle Scholar
  80. Pinochet H, Tessini C, Bravo M, Quiroz W, De Gregori I (2009) Butyltin compounds and their relation with organic matter in marine sediments from San Vicente Bay - Chile. Environ Monit Assess 155:341–353.  https://doi.org/10.1007/s10661-008-0439-7 CrossRefGoogle Scholar
  81. Radke B, Łęczyński L, Wasik A, Namieśnik J, Bolałek J (2008) The content of butyl- and penyltin derivatives in the sediment from the Port of Gdansk. Chemosphere 73(3):407–414.  https://doi.org/10.1016/j.chemosphere.2008.05.020 CrossRefGoogle Scholar
  82. Radke B, Wasik A, Jewell LL, Pączek U, Namieśnik J (2013) The speciation of organotin compounds in sediment and water samples from the Port of Gdynia. Soil Sediment Contam 22:614–630.  https://doi.org/10.1080/15320383.2013.756448 CrossRefGoogle Scholar
  83. Regulation (EC) No 782/ 2003 of the European Parliament and of the Council of 14 April 2003 on the prohibition of organotin compounds on shipsGoogle Scholar
  84. Rodríguez-Cea A, Rodríguez-González P, García Alonso JI (2016) Study of the degradation of butyltin compounds in surface water samples under different storage conditions using multiple isotope tracers and GC-MS/MS. Environ Sci Pollut Res 23:4876–4885.  https://doi.org/10.1007/s11356-015-5686-x CrossRefGoogle Scholar
  85. Romanelli G, Berto D, Calace N, Amici M, Maltese S, Formalewicz M, Campanelli A, Marini M, Magaletti E, Scarpato A (2018) Ballast water management system: assessment of chemical quality status of several ports in Adriatic Sea. Mar Pollut Bull.  https://doi.org/10.1016/j.marpolbul.2017.12.030
  86. Romeo T, D’Alessandro M, Esposito V, Scotti G, Berto D, Formalewicz M, Noventa S, Giuliani S, Macchia S, Sartori D, Mazzola A, Andaloro F, Giacobbe S, Deidun A, Renzi M (2015) Environmental quality assessment of Grand Harbour (Valletta, Maltese Islands): a case study of a busy harbourin the Central Mediterranean Sea. Environ Monit Assess 187(12):747.  https://doi.org/10.1007/s10661-015-4950-3 CrossRefGoogle Scholar
  87. Rossi de Oliveira C, Moscardi dos Santos D, dos Santos Madureira LA, Rodrigues de Marchi MR (2010) Speciation of butyltin derivatives in surface sediments of three southern Brazilian harbors. JHazard Mater 181:851–856.  https://doi.org/10.1016/j.jhazmat.2010.05.091 CrossRefGoogle Scholar
  88. Rüdel H (2003) Case study: bioavailability of tin and tin compounds. Ecotoxicol Environ Saf 56:180–189.  https://doi.org/10.1016/S0147-6513(03)00061-7 CrossRefGoogle Scholar
  89. Ruiz JM, Carro B, Albaina N, Barreiro R, Rial D, Bellas J (2018) Extended imposex monitoring in N Atlantic Spain confirms punctual attainment of European environmental objectives for TBT. Mar Pollut Bull 126:462–466.  https://doi.org/10.1016/j.marpolbul.2017.11.048 CrossRefGoogle Scholar
  90. Sakultantimetha A, Keenan HE, Beattie TK, Bangkedphol S, Cavoura O (2011) Bioremediation of tributyltin contaminated sediment: degradation enhancement and improvement of bioavailability to promote treatment processes. Chemosphere 83:680–686.  https://doi.org/10.1016/j.chemosphere.2011.02.024 CrossRefGoogle Scholar
  91. Ščančar J, Zuliani T, Turk T, Milacic R (2007) Organotin compounds and selected metals in the marine environment of northern Adriatic Sea. Environ Monit Assess 127:271–282.  https://doi.org/10.1007/s10661-006-9278-6 CrossRefGoogle Scholar
  92. Shim WJ, Oh JR, Kahng SH, Shim JH, Lee SH (1999) Horizontal distribution of butyltins in surface sediments from an enclosed bay system, Korea. Environ Pollut 106:351–357.  https://doi.org/10.1016/S0269-7491(99)00109-8 CrossRefGoogle Scholar
  93. Sonak S, Pangam P, Giriyan A, Hawaldar K (2009) Implications of the ban on organotins for protection of global coastal and marine ecology. J Environ Manag 90:S96–S108.  https://doi.org/10.1016/j.jenvman.2008.08.017 CrossRefGoogle Scholar
  94. Suzdalev S, Gulbinskas S, Blažauskas N (2015) Distribution of tributyltin in surface sediments from transitional marine-lagoon system of the south-eastern Baltic Sea, Lithuania. Environ Sci Pollut Res 22:2634–2642.  https://doi.org/10.1007/s11356-014-3521-4 CrossRefGoogle Scholar
  95. Titley-O’Neal CP, Munkittrick KR, MacDonald BA (2011) The effects of organotin on female gastropods. J Environ Monit 13:2360.  https://doi.org/10.1039/C1EM10011D CrossRefGoogle Scholar
  96. Verhaegen Y, Monteyne E, Neudecker T, Tulp I, Smagghe G, Cooreman K, Roose P, Parmentier K (2012) Organotins in North Sea brown shrimp (Crangon crangon L.) after implementation of the TBT ban. Chemosphere 86:979–984.  https://doi.org/10.1016/j.chemosphere.2011.11.028 CrossRefGoogle Scholar
  97. Wetzel MA, Winterscheid A, Wahrendorf D-S (2013) Baseline of the butyltin distribution in surface sediments (0-20 cm) of the Elbe estuary (Germany, 2011). Mar Pollut Bull 77:418–423.  https://doi.org/10.1016/j.marpolbul.2013.09.021 CrossRefGoogle Scholar
  98. WHO (World Health Organization) (1999) Concise International Chemical Assessment Document 14 (CICAD14). Tributyltin oxide. Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. Geneva, 1999Google Scholar
  99. Yamamoto S, Ishiwatari R (1992) A study of the formation mechanism of sedimentary humic substances. III. Evidence for the protein-based melanoidin model. Sci Total Environ 117/118:279–292.  https://doi.org/10.1016/0048-9697(92)90095-A CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Malgorzata M. Formalewicz
    • 1
  • Federico Rampazzo
    • 1
  • Seta Noventa
    • 1
  • Claudia Gion
    • 1
  • Elisa Petranich
    • 2
  • Matteo Crosera
    • 3
  • Stefano Covelli
    • 2
  • Jadran Faganeli
    • 4
  • Daniela Berto
    • 1
    Email author
  1. 1.Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA)ChioggiaItaly
  2. 2.Dipartimento di Matematica e GeoscienzeUniversità degli Studi di TriesteTriesteItaly
  3. 3.Dipartimento di Scienze Chimiche e FarmaceuticheUniversità degli Studi di TriesteTriesteItaly
  4. 4.Marine Biological StationNational Institute of BiologyPiranSlovenia

Personalised recommendations