Advertisement

Source apportionment of urban PM1 in Barcelona during SAPUSS using organic and inorganic components

  • Mariola Brines
  • Manuel Dall’Osto
  • Fulvio Amato
  • María Cruz Minguillón
  • Angeliki Karanasiou
  • Joan O. Grimalt
  • Andrés Alastuey
  • Xavier Querol
  • Barend L. van DroogeEmail author
Research Article
  • 51 Downloads

Abstract

Source apportionment of atmospheric PM1 is important for air quality control, especially in urban areas where high mass concentrations are often observed. Chemical analysis of molecular inorganic and organic tracer compounds and subsequently data analysis with receptor models give insight on the origin of the PM1 sources. In the present study, four source apportionment approaches were compared with an extended database containing inorganic and organic compounds that were measured during an intensive sampling campaign at urban traffic and urban background sites in Barcelona. Source apportionment of the combined database, containing both inorganic and organic compounds, was compared with more conventional approaches using inorganic and organic databases separately. Traffic emission sources were identified in all models for the two sites. The combined inorganic and organic databases provided higher discrimination capacity of emission sources. It identified aerosols generated by regional recirculation of biomass burning, secondary biogenic organic aerosols, harbor emissions, and specific industrial emissions. In this respect, this approach identified a relevant industrial source situated at NE Barcelona in which a waste incinerator plant, a combined-cycle power plant, and an industrial glass complex are located. Models using both inorganic and organic molecular tracer compounds improve the source apportionment of urban PM.

Keywords

Urban PM1 Inorganics Organics Source apportionment Receptor models 

Notes

Acknowledgments

M.C. Minguillón acknowledges the Ramón y Cajal Fellowship awarded by the Spanish Ministry of Economy, Industry and Competitiveness). The SAPUSS team is acknowledged.

Funding information

Financial support for this study was provided by the Marie Curie FP7 SAPUSS (FP7-PEOPLE-2009-IEF, project number 254773), research projects from the D.G. de Calidad y Evaluacion Ambiental (Spanish Ministry of the Environment), and the Plan Nacional de IyD (Spanish Ministry of Science and Innovation) CGL2010-19464-VAMOS and CGL2011-29621, and the Generalitat de Catalunya (AGAUR 2017 SGR41).

Supplementary material

11356_2019_6199_MOESM1_ESM.docx (2.6 mb)
ESM 1 (DOCX 2690 kb)

References

  1. Alemany S, Vilor-Tejedor N, García-Esteban R, Bustamante M, Mortamais M, Forns J, van Drooge BL, Alvárez-Pedrerol M, Grimalt JO, Rivas I, Querol X, Pujol J, Sunyer J (2018) Traffic-related air pollution, APOE ε4 status, and neurodevelopmental outcomes among school children enrolled in the BREATHE project (Catalonia, Spain). Environ Health Perspect 126(8):087001-1–087001-11CrossRefGoogle Scholar
  2. Alier M, Van Drooge BL, Dall’Osto M, Querol X, Grimalt JO, Tauler R (2013) Source apportionment of submicron organic aerosol at an urban background and a road site in Barcelona (Spain) during SAPUSS. Atmos Chem Phys 13(20):10353–10371CrossRefGoogle Scholar
  3. Amato F, Pandolfi M, Escrig A, Querol X, Alastuey A, Pey J, Perez N, Hopke PK (2009) Quantifying road dust resuspension in urban environment by Multilinear Engine: a comparison with PMF2. Atmos Environ 43:2770–2780CrossRefGoogle Scholar
  4. Amato F, Alastuey A, Karanasiou A, Lucarelli F, Nava S, Calzolai G, Severi M, Becagli S, Gianelle VL, Colombi C, Alves C, Custódio D, Nunes T, Cerqueira M, Pio C, Eleftheriadis K, Diapouli E, Reche C, Minguillón MC, Manousakas M-I, Maggos T, Vratolis S, Harrison RM, Querol X (2016) AIRUSE-LIFE+: A harmonized PM speciation and source apportionment in five southern European cities. Atmos Chem Phys 16(5):3289–3309CrossRefGoogle Scholar
  5. Balti EV, Echouffo-Tcheugui JB, Yako YY, Kengne AP (2014) Air pollution and risk of type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Res Clin Pract 106:161–172CrossRefGoogle Scholar
  6. Besombes JL, Maître A, Patissier O, Marchand N, Chevron N, Stoklov M, Masclet P (2001) Particulate PAHs observed in the surrounding of a municipal incinerator. Atmos Environ 35:6093–6104CrossRefGoogle Scholar
  7. Birch ME, Cary RA (1996) Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci Technol 25:221–241CrossRefGoogle Scholar
  8. Callén MS, de la Cruz MT, López JM, Navarro MV, Mastral AM (2009) Comparison of receptor models for source apportionment of the PM10 in Zaragoza (Spain). Chemosphere 76:1120–1129CrossRefGoogle Scholar
  9. Cavalli F, Viana M, Yttri KE, Genberg J, Putaud J-P (2010) Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol. Atmos Meas Tech 3:79–89CrossRefGoogle Scholar
  10. Choi JK, Heo JB, Ban SJ, Yi SM, Zoh KD (2012) Chemical characteristics of PM2.5 aerosol in Incheon, Korea. Atmos Environ 60:583–592CrossRefGoogle Scholar
  11. Claeys M, Graham B, Vas G, Wang W, Vermeylen R, Pashynska V, Cafmeyer J, Guyon P, Andrae MO, Artaxo P, Maenhaut W (2004) Formation of secondary organic aerosols through photooxidation of isoprene. Science 303:1173–1176CrossRefGoogle Scholar
  12. Claeys M, Szmigielski R, Kourtchev I, Van der Veken P, Vermeylen R, Maenhaut W, Jaoui M, Kleindienst T, Lewandowski M, Offenberg J, Edney E (2007) Hydroxydicarboxylic acids: markers for secondary organic aerosol from the photooxidation of α-pinene. Environ Sci Technol 41:1628–1634CrossRefGoogle Scholar
  13. Dall’Osto M, Querol X, Alastuey A, Minguillon MC, Alier M, Amato F, Brines M, Cusack M, Grimalt JO, Karanasiou A, Moreno T, Pandolfi M, Pey J, Reche C, Ripoll A, Tauler R, Van Drooge BL, Viana M, Harrison RM, Gietl J, Beddows D, Bloss W, O’Dowd C, Ceburnis D, Martucci G, Ng NL, Worsnop D, Wenger J, Mc Gillicuddy E, Sodeau J, Healy R, Lucarelli F, Nava S, Jimenez JL, Gomez Moreno F, Artinano B, Prévôt ASH, Pfaffenberger L, Frey S, Wilsenack F, Casabona D, Jiménez-Guerrero P, Gross D, Cots N (2013a) Presenting SAPUSS: solving aerosol problem by using synergistic strategies in Barcelona, Spain. Atmos Chem Phys 13:8991–9019CrossRefGoogle Scholar
  14. Dall’Osto M, Querol X, Amato F, Karanasiou A, Lucarelli F, Nava S, Calzolai G, Chiari M (2013b) Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site during SAPUSS–diurnal variations and PMF receptor modelling. Atmos Chem Phys 13:4375–4392CrossRefGoogle Scholar
  15. Draxler RR, Rolph GD (2013) HYSPLIT (HYbrid single-particle Lagrangian integrated trajectory) model access via NOAA ARL READY. NOAA Air Resources Laboratory, Silver SpringGoogle Scholar
  16. El Haddad I, Marchand N, Wortham H, Piot C, Besombes J-L, Cozic J, Chauvel C, Armengaud A, Robin D, Jaffrezo J-L (2011) Primary sources of PM2.5 organic aerosol in an industrial Mediterranean city, Marseille. Atmos Chem Phys 11:2039–2058CrossRefGoogle Scholar
  17. Escrig A, Monfort E, Celades I, Querol X, Amato F, Minguillón MC, Hopke PK (2009) Application of optimally scaled target factor analysis for assessing source contribution of ambient PM10. J Air Waste Manag 59:1296–1307CrossRefGoogle Scholar
  18. Fine PM, Cass GR, Simoneit BRT (2004) Chemical characterization of fine particle emissions from the fireplace combustion of wood types grown in the Midwestern and Western United States. Environ Eng Sci 21:387–409CrossRefGoogle Scholar
  19. Fontal M, van Drooge BL, Grimalt JO (2016) A rapid method for the analysis of methyl dihydrojasmonate and galaxolide in indoor and outdoor air particulate matter. J Chromatogr A 1447:135–140CrossRefGoogle Scholar
  20. Gianini MFD, Piot C, Herich H, Besombes J-L, Jaffrezo J-L, Hueglin C (2013) Source apportionment of PM10, organic carbon and elemental carbon at Swiss sites: an intercomparison of different approaches. Sci Total Environ 454-455:99–108CrossRefGoogle Scholar
  21. Hasheminassab S, Daher N, Shafer MM, Schauer JJ, Delfino RJ, Sioutas C (2014) Chemical characterization and source apportionment of indoor and outdoor fine particulate matter (PM2.5) in retirement communities of the Los Angeles Basin. Sci Total Environ 490:528–537CrossRefGoogle Scholar
  22. Hopke PK (2015) It is time to drop principal component analysis as a “receptor model”. J Atmos Chem 72:127–128CrossRefGoogle Scholar
  23. Hoyle CR, Boy M, Donahue NM, Fry JL, Glasius M, Guenther A, Hallar AG, Huff Hartz K, Petters MD, Petäjä T, Rosenoern T, Sullivan AP (2011) A review of the anthropogenic influence on biogenic secondary organic aerosol. Atmos Chem Phys 11:321–343CrossRefGoogle Scholar
  24. Jain S, Sharma SH, Choudhary N, Masiwal R, Saxena M, Sharma A, Mandal TK, Gupta A, Gupta NN, Sharma C (2017) Chemical characteristics and source apportionment of PM2.5 using PCA/APCS, UNMIX, and PMF at an urban site of Delhi, India. Environ Sci Pollut Res 24:14637–14656CrossRefGoogle Scholar
  25. Karagulian F, Belis CA (2012) Enhancing source apportionment with receptor models to foster the air quality directive implementation. Int J Environ Pollut 50:190–199CrossRefGoogle Scholar
  26. Lim HJ, Turpin BJ (2002) Origins of primary and secondary organic aerosol in Atlanta: results of time-resolved measurements during the Atlanta supersite experiment. Environ Sci Technol 36:4489–4496CrossRefGoogle Scholar
  27. Lin YH, Zhang Z, Docherty KS, Zhang H, Budisulistiorini SH, Rubitschun CL, Shaw SL, Knipping EM, Edgerton ES, Kleindienst TE, Gold A, Surratt JD (2012) Isoprene epoxydiols as precursors to secondary organic aerosol formation: acid-catalyzed reactive uptake studies with authentic compounds. Environ Sci Technol 46:250–258CrossRefGoogle Scholar
  28. Liu G, Tong Y, Luong JHT, Zhang H, Sun H (2010) A source study of atmospheric polycyclic aromatic hydrocarbons in Shenzhen, South China. Environ Monit Assess 163:599–606CrossRefGoogle Scholar
  29. Liu Q, Baumgartner J, Zhang Y, Schauer JJ (2016) Source apportionment of Beijing air pollution during a severe winter haze event and associated pro-inflammatory responses in lung epithelial cells. Atmos Environ 126:28–35CrossRefGoogle Scholar
  30. Maître A, Collot-Fertey D, Anzivino L, Marques M, Hours M, Stoklov M (2003) Municipal waste incinerators: air and biological monitoring of workers for exposure to particles, metals, and organic compounds. Occup Environ Med 60:563–569CrossRefGoogle Scholar
  31. Mazzei F, D’Alessandro A, Lucarelli F, Nava S, Prati P, Valli G, Vecchi R (2008) Characterization of particulate matter sources in an urban environment. Sci Total Environ 401:81–89CrossRefGoogle Scholar
  32. Mesquita SR, van Drooge BL, Dall’Osto M, Grimalt JO, Barata C, Vieira N, Guimaraes L, Piña B (2017) Toxic potential of organic constituents of submicron particulate matter (PM1) in an urban road site (Barcelona). Environ Sci Pollut Res 24:15406–15415CrossRefGoogle Scholar
  33. Minguillón MC, Schembari A, Triguero-Mas M, de Nazelle A, Dadvand P, Figueras F, Salvado JA, Grimalt JO, Nieuwenhuijsen M, Querol X (2012) Source apportionment of indoor, outdoor and personal PM2.5 exposure of pregnant women in Barcelona, Spain. Atmos Environ 59:426–436CrossRefGoogle Scholar
  34. Minguillón MC, Cirach M, Hoek G, Brunekreef B, Tsai M, de Hoogh K, Jedynska A, Kooter IM, Nieuwenhuijsen M, Querol X (2014) Spatial variability of trace elements and sources for improved exposure assessment in Barcelona. Atmos Environ 89:268–281CrossRefGoogle Scholar
  35. Moreno T, Querol X, Alastuey A, Reche C, Cusack M, Amato F, Pandolfi M, Pey J, Richard A, Prévôt ASH, Furger M, Gibbons W (2011) Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings. Atmos Chem Phys 11:9415–9430CrossRefGoogle Scholar
  36. Ntziachristos L, Ning Z, Geller MD, Sioutas C (2007) Particle concentration and characteristics near a major freeway with heavy-duty diesel traffic. Environ Sci Technol 41:2223–2230CrossRefGoogle Scholar
  37. Pandolfi M, Gonzalez-Castanedo Y, Alastuey A, de la Rosa J, Mantilla E, de la Campa AL, Querol X, Pey J, Amato F, Moreno T (2011) Source apportionment of PM10 and PM2.5 at multiple sites in the strait of Gibraltar by PMF: impact of shipping emissions. Environ Sci Pollut Res 18:260–269CrossRefGoogle Scholar
  38. Pant P, Harrison R (2012) Critical review of receptor modelling for particulate matter: a case study of India. Atmos Environ 49:1–12CrossRefGoogle Scholar
  39. Park SS, Kim YJ (2005) Source contributions to fine particulate matter in an urban atmosphere. Chemosphere 59:217–226CrossRefGoogle Scholar
  40. Pekney N, Davidson C, Robinson A, Zhou L, Hopke P, Eatough D (2006) Rogge, W. Major source categories for PM2.5 in Pittsburgh using PMF and UNMIX. Aerosol Sci Technol 40:910–924CrossRefGoogle Scholar
  41. Pérez N, Pey J, Querol X, Alastuey A, López JM, Viana M (2008) Partitioning of major and trace components in PM10-PM2.5-PM1 at an urban site in Southern Europe. Atmos Environ 42:1677–1691CrossRefGoogle Scholar
  42. Pérez N, Pey J, Cusack M, Reche C, Querol X, Alastuey A, Viana M (2010) Levels and speciation: influence of road traffic emissions on urban air quality. Aerosol Sci Technol 44:487–499CrossRefGoogle Scholar
  43. Querol X, Alastuey A, Rodrıguez S, Plana F, Ruiz CR, Cots N, Massague G, Puig O (2001) PM10 and PM2.5 source apportionment in the Barcelona metropolitan area, Catalonia, Spain. Atmos Environ 35/36:6047–6419Google Scholar
  44. Reche C, Moreno T, Amato F, Viana M, van Drooge BL, Chuang HC, Berube K, Jones T, Alastuey A, Querol X (2012a) A multidisciplinary approach to characterise exposure risk and toxicological effects of PM10 and PM2.5 samples in urban environments. Ecotoxicol Environ Saf 78:327–335CrossRefGoogle Scholar
  45. Reche C, Viana M, Amato F, Alastuey A, Moreno T, Hillamo R, Teinilä K, Saarnio K, Seco R, Peñuelas J, Mohr C, Prévôt AS, Querol X (2012b) Biomass burning contributions to urban aerosols in a coastal Mediterranean city. Sci Total Environ 247-248:175–190CrossRefGoogle Scholar
  46. Robinson AL, Subramanian R, Donahue NM, Bernardo-Bricker A, Rogge WF (2006) Source apportionment of molecular markers and organic aerosol – 3. Food cooking emissions. Environ Sci Technol 40:7820–7827CrossRefGoogle Scholar
  47. Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1993) Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy duty diesel trucks. Environ Sci Technol 27:636–651CrossRefGoogle Scholar
  48. Rohr AC, Wyzga RE (2012) Attributing health effects to individual particulate matter constituents. Atmos Environ 62:130–152CrossRefGoogle Scholar
  49. Samara C, Kouimtzis T, Tsitouridou R, Kanias G, Simeonov V (2003) Chemical mass balance source apportionment of PM10 in an industrialized urban area of Northern Greece. Atmos Environ 37:41–54CrossRefGoogle Scholar
  50. Shirmohammadi F, Hasheminassab S, Wang D, Schauer JJ, Shafer MM, Delfino RJ, Sioutas C (2016) The relative importance of tailpipe and non-tailpipe emissions on the oxidative potential of ambient particles in Los Angeles, CA. Faraday Discuss 189:361–380CrossRefGoogle Scholar
  51. Simoneit BRT (2002) Biomass burning – a review of organic tracers for smoke from incomplete combustion. Appl Geochem 17:129–162CrossRefGoogle Scholar
  52. Sternbeck J, Sjödin A, Andréasson K (2002) Metal emissions from road traffic and the influence of resuspension results from two tunnel studies. Atmos Environ 36:4735–4744CrossRefGoogle Scholar
  53. Surratt JD, Chan AWH, Eddingsaas NC, Chan MN, Loza CL, Kwan AL, Hersey SP, Flagan RC, Wennberg PO, Seinfeld JH (2010) Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proc Natl Acad Sci U S A 107:6640–6645CrossRefGoogle Scholar
  54. Szmigielski R, Surratt JD, Gómez-González Y, Van der Veken P, Kourtchev I, Vermeylen R, Blockhuys F, Jaoui M, Kleindienst TE, Lewandowski M, Offenberg JH, Edney EO, Seinfeld JH, Maenhaut W, Claeys M (2007) 3-Methyl-1,2,3-butanetricarboxylic acid: an atmospheric tracer for terpene secondary organic aerosol. Geophys Res Lett 34:L24811.  https://doi.org/10.1029/2007GL031338 CrossRefGoogle Scholar
  55. Tauler R, Viana M, Querol X, Alastuey A, Flight RM, Wentzell PD, Hopke PK (2009) Comparison of the results obtained by four receptor modelling methods in aerosol source apportionment studies. Atmos Environ 43:3989–3997CrossRefGoogle Scholar
  56. van Drooge BL, Crusack M, Reche C, Mohr C, Alastuey A, Querol X, Prevot A, Day DA, Jimenez JL, Grimalt JO (2012) Molecular marker characterization of the organic composition of submicron aerosols from Mediterranean urban and rural environments under contrasting meteorological conditions. Atmos Environ 61:482–489.  https://doi.org/10.1016/j.atmosenv.2012.07.039 CrossRefGoogle Scholar
  57. van Drooge BL, Fontal M, Bravo N, Fernández P, Fernández MA, Muñoz-Arnanz J, Jiménez B, Grimalt JO (2014) Seasonal and spatial variation of organic tracers for biomass burning in PM1 aerosols in highly insolated urban areas. Environ Sci Pollut Res 21:11661–11670CrossRefGoogle Scholar
  58. van Drooge BL, Fontal M, Fernández P, Fernández MA, Muñoz-Arnanz J, Jiménez B, Grimalt JO (2018) Organic molecular tracers in atmospheric PM1 at urban intensive traffic and background sites in two high-insolation European cities. Atmos Environ 188:71–81CrossRefGoogle Scholar
  59. Venturini E, Vassura I, Raffo S, Ferroni L, Bernardi E, Passarini F (2014) Source apportionment and location by selective wind sampling and positive matrix factorization. Environ Sci Pollut Res 21:11634–11648CrossRefGoogle Scholar
  60. Viana M, Amato F, Alastuey A, Querol X, Moreno T, Santos SGD, Herce MD, Fernández-Patier R (2009) Chemical tracers of particulate emissions from commercial shipping. Environ Sci Technol 43:7472–7477CrossRefGoogle Scholar
  61. Vossler T, Černikovský L, Novák J, Williams R (2016) Source apportionment with uncertainty estimates of fine particulate matter in Ostrava, Czech Republic using positive matrix factorization. Atmos Pollut Res 7:503–512CrossRefGoogle Scholar
  62. Waked A, Favez O, Alleman LY, Piot C, Petit J-E, Delaunay T, Verlinden E, Golly B, Besombes J-L, Jaffrezo J-L, Leoz-Garziandia E (2014) Source apportionment of PM10 in a north-western Europe regional urban background site (Lens, France) using positive matrix factorization and including primary biogenic emissions. Atmos Chem Phys 14:3325–3346CrossRefGoogle Scholar
  63. Wang QQ, Huang XHH, Zhang T, Zhang Q, Feng Y, Yuan Z, Wu D, Lau AKH, Yu JZ (2015) Organic tracer-based source analysis of PM2.5, organic and elemental carbon: a case study at Dongguan in the Pearl River Delta, China. Atmos Environ 118:164–175CrossRefGoogle Scholar
  64. Zielinska B, Sagebiel J, McDonald JD, Whitley K, Lawson DR (2004) Emission rates and comparative chemical composition from selected in-use diesel and gasoline-fueled vehicles. J Air Waste Manage Assoc 54:1138–1150CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mariola Brines
    • 1
    • 2
  • Manuel Dall’Osto
    • 3
  • Fulvio Amato
    • 1
  • María Cruz Minguillón
    • 1
  • Angeliki Karanasiou
    • 1
  • Joan O. Grimalt
    • 1
  • Andrés Alastuey
    • 1
  • Xavier Querol
    • 1
  • Barend L. van Drooge
    • 1
    Email author
  1. 1.Institute of Environmental Assessment and Water Research (IDÆA) Consejo Superior de Investigaciones Científicas (CSIC)BarcelonaSpain
  2. 2.Department of Astronomy and Meteorology, Faculty of PhysicsUniversity of BarcelonaBarcelonaSpain
  3. 3.Institute of Marine Sciences (ICM) Consejo Superior de Investigaciones Científicas (CSIC)BarcelonaSpain

Personalised recommendations