Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 30, pp 30930–30940 | Cite as

Effects of mercury on the germination and growth of Quercus ilex L. seedlings

  • Javier Rodríguez-AlonsoEmail author
  • María José Sierra
  • Miguel Ángel Lominchar
  • Rocío Millán
Research Article
  • 120 Downloads

Abstract

While it is well-known that the toxicity of mercury for plants is related to its bioavailability in the environment in which the plant lives, few studies have addressed Hg effects under controlled conditions of life-limiting available Hg concentrations. This study examines the effects of Hg on the holm oak (Quercus ilex L.) exposed to medium-high available Hg concentrations. Holm oak seeds were sown in a perlite substrate and grown in the presence of a nutrient solution containing 0, 5, 25, or 50 μM Hg. The variables determined as outcome measures were impacts on germination, growth, and nutrient accumulation along with Hg concentration in leaves, stems, and roots at different growth stages. Our findings suggest no overall detrimental effects of the metal on germination, nutrient accumulation, and plant growth, although root morphology was clearly modified. Mercury accumulation in the plant varied according to time, organ, Hg treatment dose, and plant growth stage. When comparing Hg build-up in the different organs, highest concentrations of the metal were detected in the roots, followed by the leaves and stems. The Hg accumulation pattern was positively correlated with time and Hg dose, whereas negative correlation was observed with growth stage. The impacts of all these factors on Hg accumulation were not additive pointing to interesting interaction effects that should be explored in future work.

Keywords

Holm oak Growth stage Mercury accumulation Nutrient accumulation Interaction effects 

Notes

Acknowledgments

We are grateful to all the members of the CIEMAT Research Unit “Conservación y Recuperación de Suelos” for the essential help in the second sampling effort, when hundreds of holm oak seedlings had to be washed, weighed, and measured in just 4 days.

Supplementary material

11356_2019_6186_MOESM1_ESM.pptx (98 kb)
ESM 1 (PPTX 98 kb)

References

  1. Assad M, Parelle J, Cazaux D, Gimbert F, Chalot M, Tatin-Froux F (2016) Mercury uptake into poplar leaves. Chemosphere 146:1–7CrossRefGoogle Scholar
  2. Beauford W, Barber J, Barringer AR (1977) Uptake and distribution of mercury within higher plants. Physiol Plant 39:261–265CrossRefGoogle Scholar
  3. Bona C, de Rezende IM, Santos GO, de Souza LA (2011) Effect of soil contaminated by diesel oil on the germination of seeds and the growth of Schinus terebinthifolius Raddi (Anacardiaceae) seedlings. Braz Arch Biol Technol 54:1379–1387CrossRefGoogle Scholar
  4. Cardoso AÁ, Borges EEL, de Souza GA, da Silva CJ, Pires RMO, Dias DCFS (2015) Seed imbibition and germination of Plathymenia reticulata Benth. (Fabaceae) affected by mercury: possible role of aquaporins. Acta Bot Bras 29:285–291CrossRefGoogle Scholar
  5. Cho UH, Park JO (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci J 156:1–9CrossRefGoogle Scholar
  6. Deng B, Yang K, Zhang Y, Li Z (2016) Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu2+, Cd2+ and Hg2+) on maize seed germination under high temperature. Environ Pollut 216:46–52CrossRefGoogle Scholar
  7. Ericksen JA, Gustin MS, Schorran DE, Johnson DW, Lindberg SE, Coleman JS (2003) Accumulation of atmospheric mercury in forest foliage. Atmos Environ 37:1613–1622CrossRefGoogle Scholar
  8. Esteban E, Moreno E, Peñalosa J, Cabrero JI, Millán R, Zornoza P (2008) Short and long-term uptake of Hg in white lupin plants: kinetics and stress indicators. Environ Exp Bot 62:316–322CrossRefGoogle Scholar
  9. Fernández-Martínez R, Loredo J, Ordóñez A, Rucandio MI (2005) Distribution and mobility of mercury in soils from an old mining area in Mieres, Asturias (Spain). Sci Total Environ 346:200–212CrossRefGoogle Scholar
  10. Fernández-Martínez R, Larios R, Gómez-Pinilla I, Gómez-Mancebo B, López-Andrés S, Loredo J, Ordóñez A, Rucandio I (2015) Mercury accumulation and speciation in plants and soils from abandoned cinnabar mines. Geoderma 253-254:30–38CrossRefGoogle Scholar
  11. Godbold DL (1991) Mercury-induced root damage in spruce seedlings. Water Air Soil Pollut 56:823–831CrossRefGoogle Scholar
  12. Gupta M, Chandra P (1998) Bioaccumulation and toxicity of mercury in rooted-submerged macrophyte Vallisneria spiralis. Environ Pollut 103:327–332CrossRefGoogle Scholar
  13. Higueras P, Molina JA, Oyarzun R, Lillo J, Esbrí JM (2004) Identification of the plant-communities and hyperaccumulators in mercury contaminated sectors of the Almadén district, Spain. Part I. Contaminated sites, 103–107Google Scholar
  14. Higueras P, Oyarzun R, Lillo J, Sánchez-Hernández JC, Molina JA, Esbrí JM, Lorenzo S (2006) The Almadén district (Spain): anatomy of one of the world’s largest Hg-contaminated sites. Sci Total Environ 356:112–124CrossRefGoogle Scholar
  15. Higueras P, Amorós JA, Esbrí JM, García-Navarro FJ, Pérez de los Reyes C, Moreno G (2012) Time and space variations in mercury and other trace element contents in olive tree leaves from the Almadén Hg-mining district. J Geochem Explor 123:143–151CrossRefGoogle Scholar
  16. Higueras P, Esbrí JM, García-Ordiales E, González-Corrochano B, López-Berdonces MA, García-Noguero EM, Alonso-Azcárate J, Martínez-Coronado A (2017) Potentially harmful elements in soils and holm-oak trees (Quercus ilex L.) growing in mining sites at the Valle de Alcudia Pb-Zn district (Spain)-Some clues on plant metal uptake. J Geochem Explor 182(Part B):166–179CrossRefGoogle Scholar
  17. Hutnik RJ, McClenahen JR, Long RP, Davis DD (2014) Mercury accumulation in Pinus nigra (Austrian Pine). Northeast Nat 21:529–540CrossRefGoogle Scholar
  18. Israr M, Sahi S, Datta R, Sarkar D (2006) Bioaccumulation and physiological effects of mercury in Sesbania drummondii. Chemosphere 65:591–598CrossRefGoogle Scholar
  19. Jiménez P, Díaz-Fernández P, Martín S, De Tuero M, Gil L (1996) Regiones de procedencia de Quercus ilex L. ICONA, MadridGoogle Scholar
  20. Kranner I, Colville L (2011) Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environ Exp Bot 72:93–105CrossRefGoogle Scholar
  21. Li W, Khan MA, Yamaguchi S, Kamiya Y (2005) Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana. Plant Growth Regul 46:45–50CrossRefGoogle Scholar
  22. Li C, Feng S, Shao Y, Jiang L, Lu X, Hou X (2007) Effects of arsenic on seed germination and physiological activities of wheat seedlings. J Environ Sci 19:725–732CrossRefGoogle Scholar
  23. Ling T, Fangke Y, Jun R (2010) Effect of mercury to seed germination, coleoptile growth and root elongation of four vegetables. Res J Phytochem 4(4):225–233CrossRefGoogle Scholar
  24. Lozano Rodríguez E, Luguera M, Lucena JJ, Carpena-Ruiz RO (1995) Evaluation of two different acid digestión methods in closed systems for trace element determination in plants. Quim Anal 14:27–30Google Scholar
  25. Maguire JD (1962) Speed of germination-aid in selection and evaluation from seeding emergence and vigor. Crop Sci 2:176–177CrossRefGoogle Scholar
  26. Marrugo-Negrete J, Durango-Hernández J, Pinedo-Hernández J, Enamorado-Montes G, Díez S (2016) Mercury uptake and effects on growth in Jatropha curcas. J Environ Sci 48:120–125CrossRefGoogle Scholar
  27. Mengel K, Kirkby EA, Kosegarten H, Appel T (2001) Plant nutrients. In: Mengel K, Kirkby EA, Kosegarten H, Appel T (eds) Principles of plant nutrition. Springer Netherlands, Dordrecht, pp 1–13CrossRefGoogle Scholar
  28. Miklavcic A, Mazej D, Jacimovic R, Dizdarevio T, Horvat M (2013) Mercury in food items from the Idrija Mercury Mine area. Environ Res 125:61–68CrossRefGoogle Scholar
  29. Millán R, Gamarra R, Schmid T, Sierra MJ, Quejido AJ, Sánchez DM, Cardona AI, Fernández M, Vera R (2006) Mercury content in vegetation and soils of the Almadén mining area (Spain). Sci Total Environ 368:79–87CrossRefGoogle Scholar
  30. Millán R, Schmid T, Sierra MJ, Carrasco-Gil S, Villadóniga M, Rico C, Ledesma DMS, Puente FJD (2011) Spatial variation of biological and pedological properties in an area affected by a metallurgical mercury plant: Almadenejos (Spain). Appl Geochem 26:174–181CrossRefGoogle Scholar
  31. Millán R, Lominchar MA, López-Tejedor I, Rodríguez-Alonso J, Schmid T, Sierra MJ (2012) Behavior of mercury in the Valdeazogues riverbank soil and transfer to Nerium oleander L. J Geochem Explor 123:136–142CrossRefGoogle Scholar
  32. Millán R, Lominchar MA, Rodríguez-Alonso J, Schmid T, Sierra MJ (2014) Riparian vegetation role in mercury uptake (Valdeazogues River, Almadén, Spain). J Geochem Explor 140:104–110CrossRefGoogle Scholar
  33. Millhollen AG, Gustin MS, Obrist D (2006) Foliar mercury accumulation and exchange for three tree species. Environ Sci Technol 40:6001–6006CrossRefGoogle Scholar
  34. Moreno-Jiménez E, Gamarra R, Carpena-Ruiz RO, Millán R, Peñalosa JM, Esteban E (2006) Mercury bioaccumulation and phytotoxicity in two wild plant species of Almadén area. Chemosphere 63:1969–1973CrossRefGoogle Scholar
  35. Moreno-Jiménez E, Peñalosa JM, Esteban E, Carpena-Ruiz RO (2007) Mercury accumulation and resistance to mercury stress in Rumex induratus and Marrubium vulgare grown in perlite. J Plant Nutr Soil Sci 170:485–494CrossRefGoogle Scholar
  36. Moreno-Jiménez E, Gimeno H, Gamarra R, Esteban E (2013) Evidence of a new Hg-tolerant ecotype of Rumex induratus from Almadén (Ciudad Real, Spain). Plant Biosyst 148:58–63CrossRefGoogle Scholar
  37. Panda KK, Lenka M, Panda BB (1992) Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant. II Plant-availability, tissue-concentration and genotoxicity of mercury from agricultural soil contaminated with solid waste assessed in barley (Hordeum vulgare L.). Environ Pollut 76:33–42CrossRefGoogle Scholar
  38. Rasmussen P (1995) Temporal variation of mercury in vegetation. Water Air Soil Pollut 80:1039–1042CrossRefGoogle Scholar
  39. Ren JH, Sun HJ, Wang SF, Luo J, Ma LQ (2014) Interactive effects of mercury and arsenic on their uptake, speciation and toxicity in rice seedling. Chemosphere 117:737–744CrossRefGoogle Scholar
  40. Rodríguez E, Peralta-Videa JR, Israr M, Sahi SV, Pelayo H, Sánchez-Salcido B, Gardea-Torresdey JL (2009) Effect of mercury and gold on growth, nutrient uptake, and anatomical changes in Chilopsis linearis. Environ Exp Bot 65:253–262CrossRefGoogle Scholar
  41. Rodríguez-Alonso J, Sierra MJ, Millán R (2014) Distribución y variación estacional e interanual de mercurio en la encina (Q. ilex L.) en el municipio de Almadenejos (Ciudad Real). Informes Técnicos Ciemat 1327:1–39Google Scholar
  42. Rodríguez-Alonso J, Sierra MJ, Lominchar MA, Millán R (2017) Mercury tolerance study in holm oak populations from the Almadén mining district (Spain). Environ Exp Bot 133:98–107CrossRefGoogle Scholar
  43. Sardans J, Peñuelas J (2006) Introduction of the factor of partitioning in the lithogenic enrichment factors of trace element bioaccumulation in plant tissues. Environ Monit Assess 115:473–498CrossRefGoogle Scholar
  44. Sengar RS, Gautam M, Sengar K, Chaudhary R, Garg S (2010) Physiological and metabolic effect of mercury accumulation in higher plants system. Toxicol Environ Chem 92:1265–1281CrossRefGoogle Scholar
  45. Sierra MJ, Millán R, Esteban E (2009) Mercury uptake and distribution in Lavandula stoechas plants grown in soil from Almadén mining district (Spain). Food Chem Toxicol 47:2761–2767CrossRefGoogle Scholar
  46. Sierra MJ, Rodríguez-Alonso J, Millán R (2012) Impact of the lavender rhizosphere on the mercury uptake in field conditions. Chemosphere 89:1457–1466CrossRefGoogle Scholar
  47. Street RA, Kulkarni MG, Stirk WA, Southway C, Van Staden J (2007) Toxicity of metal elements on germination and seedling growth of widely used medicinal plants belonging to Hyacinthaceae. Bull Environ Contam Toxicol 79:371–376CrossRefGoogle Scholar
  48. Suszcynsky EM, Shann JR (1995) Phytotoxicity and accumulation of mercury in tobacco subjected to different exposure routes. Environ Toxicol Chem 14:61–67CrossRefGoogle Scholar
  49. Tomiyasu T, Kodamatani H, Imura R, Matsuyama A, Miyamoto J, Akagi H, Kocman D, Kotnik J, Fajon V, Horvat M (2017) The dynamics of mercury near Idrija mercury mine, Slovenia: horizontal and vertical distributions of total, methyl, and ethyl mercury concentrations in soils. Chemosphere 184:244–252CrossRefGoogle Scholar
  50. Villadóniga M, Sierra MJ, Millán R (2009) El encinar en el distrito minero de Almadén y su afectación por la minería del mercurio. Informes Técnicos Ciemat 1186:1–37Google Scholar
  51. Zazo J, Calderón C, Cornejo L (2000) Apuntes y notas de los caracteres culturales y otras características de interés de algunas frondosas forestales españolas. Escuela Ingeniería Técnica Forestal, MadridGoogle Scholar
  52. Zornoza P, Millán R, Sierra MJ, Seco A, Esteban E (2010) Efficiency of white lupin in the removal of mercury from contaminated soils: Soil and hydroponic experiments. J Environ Sci 22:421–427CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Javier Rodríguez-Alonso
    • 1
    Email author
  • María José Sierra
    • 1
  • Miguel Ángel Lominchar
    • 1
  • Rocío Millán
    • 1
  1. 1.CIEMAT—Environmental Department (DMA)MadridSpain

Personalised recommendations