Estimation of Kd(PAR) in inland waters across China in relation to the light absorption of optically active components

  • Zhidan Wen
  • Kaishan SongEmail author
  • Chong Fang
  • Qian Yang
  • Ge Liu
  • Yingxin Shang
  • Xiaodi Wang
Research Article


The comprehensive analysis of the relationships between the attenuation of photosynthetic active radiation (Kd(PAR)) and light absorption is an imperative requirement to retrieve Kd(PAR) from remote sensing data for aquatic environments. The spatial distributions of the Kd(PAR) and light absorption of optically active components (aOACs) were routinely estimated in China lakes and reservoirs. Spatial Kd(PAR) was relatively dependent on the inorganic particles (average relative contribution of 57.95%). The aOACs could explain 70–87% of Kd(PAR) variations. A linear model is used to predict Kd(PAR), as a function of light absorption coefficient of phytoplankton (aphy), colored dissolved organic matter (aCDOM), and inorganic particles (aNAP): Kd(PAR) = 0.41 + 0.57 × aCDOM + 0.96 × aNAP + 0.57 × aphy (R2 = 0.87, n = 741, p < 0.001). In the lakes with low TSM concentration and non-eutrophic lakes with high TSM, aCDOM was the most powerful predicting factor on Kd(PAR). In eutrophic lakes with high TSM, aNAP had the most significant impact on Kd(PAR). This study allowed Kd(PAR) to be predicted from aOACs values in the inland waters.


Light attenuation Light absorption Optically active components Photosynthetic active radiation Inland waters 


Funding information

This study was jointly supported by the National Natural Science Foundation of China (no. 41730104, no. 41701423, no.41871234), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA19070501), and the Strategic Planning Project from Institute of Northeast Geography and Agroecology (IGA), Chinese Academy of Sciences (Y6H2091001).

Supplementary material

11356_2019_6122_MOESM1_ESM.docx (158 kb)
ESM 1 (DOCX 157 kb)


  1. Aizaki M, Otsuki A, Fukushima T, Kawai T, Hosomi M, Muraoka K (1981) Application of modified Carlson’s trophic state index to Japanese lakes and its relationship to other parameters. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 21:1, 675–681Google Scholar
  2. APHA, AWWA, WEF (1998) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DCGoogle Scholar
  3. Bachmann RW, Hoyer MV, Canfield DE (2000) The potential for wave disturbance in Shallow Florida Lakes. Lake Reserv Manage 16(4):281–291CrossRefGoogle Scholar
  4. Belzile C, Vincent WF, Kumagai M (2002) Contribution of absorption and scattering to the attenuation of UV and photosynthetically available radiation in Lake Biwa. Limnol Oceanogr 47(1):95–107CrossRefGoogle Scholar
  5. Brandao LPM, Brighenti LS, Staehr PA, Barbosa FAR, Bezerra-Neto JF (2017) Partitioning of the diffuse attenuation coefficient for photosynthetically available irradiance in a deep dendritic tropical lake. An Acad Bras Cienc 89(1):469–489CrossRefGoogle Scholar
  6. Breiman L, Friedman J, Olshen R (1984) Classification and regression trees. Wadsworth International Group, BelmontGoogle Scholar
  7. Bricaud A, Stramski D (1990) Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea. Limnol Oceanogr 35(3):562–582CrossRefGoogle Scholar
  8. Bricaud A, Morel A, Prieur L (1981) Absorption by dissolved organic matter of the sea (Yekkow substance) in the UV and visible domains. Limnol Oceanogr 26(1):43–53CrossRefGoogle Scholar
  9. Budhiman S, Suhyb Salama M, Vekerdy Z, Verhoef W (2012) Deriving optical properties of Mahakam Delta coastal waters, Indonesia using in situ measurements and ocean color model inversion. ISPRS J Photogramm Remote Sens 68:157–169CrossRefGoogle Scholar
  10. Budzynska A, Rosinska J, Pelechata A, Toporowska M, Napiorkowska-Krzebietke A, Kozak A, Messyasz B, Peczula W, Kokocinski M, Szelag-Wasielewska E, Grabowska M, Madrecka B, Niedzwiecki M, Parraga PA, Pelechaty M, Karpowicz M, Pawlik-Skowronska B (2019) Environmental factors driving the occurrence of the invasive cyanobacterium Sphaerospermopsis aphanizomenoides (Nostocales) in temperate lakes. Sci Total Environ 650:1338–1347CrossRefGoogle Scholar
  11. Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22(2):361–369CrossRefGoogle Scholar
  12. Chen J, Zhu Y, Wu Y, Cui T, Ishizaka J, Ju Y (2015) A Neural Network Model for K(lambda) Retrieval and application to global K-par monitoring. PLoS One 10(6): e0127514Google Scholar
  13. Cleveland JS, Weidemann AD (1993) Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters. Limnol Oceanogr 38(6):1321–1327CrossRefGoogle Scholar
  14. Cunningham A, Ramage L, McKee D (2013) Relationships between inherent optical properties and the depth of penetration of solar radiation in optically complex coastal waters. J Geophys Res Oceans 118(5):2310–2317CrossRefGoogle Scholar
  15. Devlin MJ, Barry J, Mills DK, Gowen RJ, Foden J, Sivyer D, Greenwood N, Pearce D, Tett P (2009) Estimating the diffuse attenuation coefficient from optically active constituents in UK marine waters. Estuar Coast Shelf Sci 82(1):73–83CrossRefGoogle Scholar
  16. Duan H, Ma R, Xu X, Kong F, Zhang S, Kong W, Hao J, Shang L (2009) Two-decade reconstruction of algal blooms in China’s Lake Taihu. Environ Sci Technol 43(10):3522–3528CrossRefGoogle Scholar
  17. Effler SW, Schafran GC, Driscoll CT (1985) Partitioning light attenuation in an acidic lake. Can J Fish Aquat Sci 42(11):1707–1711CrossRefGoogle Scholar
  18. Frankovich TA, Rudnick DT, Fourqurean JW (2017) Light attenuation in estuarine mangrove lakes. Estuar Coast Shelf Sci 184:191–201CrossRefGoogle Scholar
  19. Hampton SE, Galloway WE, Powers SM et al (2017) Ecology under lake ice. Ecol Lett 20:98–111CrossRefGoogle Scholar
  20. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167(2):191–194CrossRefGoogle Scholar
  21. Jin XC, Xu QJ, Huang CZ (2005) Current status and future tendency of lake eutrophication in China. Sci China C Life Sci 48:948–954Google Scholar
  22. Kirk JTO (1976) Yellow substance (gelbstoff) and its contribution to the attenuation of photosynthetically active radiation in some inland and coastal south-eastern Australian waters. Aust J Mar Freshwat Res 27(1):61–71CrossRefGoogle Scholar
  23. Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, New York, pp 1–431Google Scholar
  24. Laurion I, Ventura M, Catalan J, Psenner R, Sommaruga R (2000) Attenuation of ultraviolet radiation in mountain lakes: factors controlling the among- and within-lake variability. Limnol Oceanogr 45(6):1274–1288CrossRefGoogle Scholar
  25. Lund-Hansen LC (2004) Diffuse attenuation coefficients K-d(PAR) at the estuarine North Sea-Baltic Sea transition: time-series, partitioning, absorption, and scattering. Estuar Coast Shelf Sci 61(2):251–259CrossRefGoogle Scholar
  26. Ma R, Yang G, Duan H, Jiang J, Wang S, Feng X, Li A, Kong F, Xue B, Wu J, Li S (2011) China’s lakes at present: number, area and spatial distribution. Sci China Earth Sci 41(3):394–401Google Scholar
  27. Ma J, Song K, Wen Z, Zhao Y, Shang Y, Fang C, Du J (2016) Spatial distribution of diffuse attenuation of photosynthetic active radiation and its main regulating factors in inland waters of Northeast China. Remote Sens 8(11), 964.
  28. Ma PF, Wang CS, Meng J, Ma C, Zhao XX, Li YL, Wang M (2017) Late Oligocene-early Miocene evolution of the Lunpola Basin, central Tibetan Plateau, evidences from successive lacustrine records. Gondwana Res 48:224–236CrossRefGoogle Scholar
  29. Markager S, Vincent WF (2000) Spectral light attenuation and the absorption of UV and blue light in natural waters. Limnol Oceanogr 45(3):642–650CrossRefGoogle Scholar
  30. Matsushita B, Yang W, Yu G, Oyama Y, Yoshimura K, Fukushima T (2015) A hybrid algorithm for estimating the chlorophyll-a concentration across different trophic states in Asian inland waters. ISPRS J Photogramm Remote Sens 102:28–37CrossRefGoogle Scholar
  31. Morris DP, Zagarese H, Williamson CE, Balseiro EG, Hargreaves BR, Modenutti B, Moeller R, Queimalinos C (1995) The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol Oceanogr 40(8):1381–1391CrossRefGoogle Scholar
  32. Ndebele-Murisa MR, Musil CF, Magadza CHD, Raitt L (2014) A decline in the depth of the mixed layer and changes in other physical properties of Lake Kariba’s water over the past two decades. Hydrobiologia 721(1):185–195CrossRefGoogle Scholar
  33. Oliver SK, Collins SM, Soranno PA, Wagner T, Stanley EH, Jones JR, Stow CA, Lottig NR (2017) Unexpected stasis in a changing world: lake nutrient and chlorophyll trends since 1990. Glob Chang Biol 23(12):5455–5467CrossRefGoogle Scholar
  34. Olmanson LG, Bauer ME, Brezonik PL (2008) A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sens Environ 112(11):4086–4097CrossRefGoogle Scholar
  35. Pfannkuche J (2002) Optical properties of Otago shelf waters: South Island New Zealand. Coast Shelf Sci 55:613–627CrossRefGoogle Scholar
  36. Phlips EJ, Aldridge FJ, Schelske CL, Crisman TL (1995) Relationships between light availability, chlorophyll a, and tripton in a large, shallow subtropical lake. Limnol Oceanogr 40(2):416–421Google Scholar
  37. Pierson DC, Markensten H, Strömbeck N (2003) Long and short term variations in suspended particulate material: the influence on light available to the phytoplankton community. The Interactions between Sediments and Water, 2003. Springer Netherlands, Dordrecht, pp 299–304Google Scholar
  38. Pierson DC, Kratzer S, Strombeck N, Hakansson B (2008) Relationship between the attenuation of downwelling irradiance at 490 nm with the attenuation of PAR (400 nm–700 nm) in the Baltic Sea. Remote Sens Environ 112(3):668–680CrossRefGoogle Scholar
  39. Pope RM, Fry ES (1997) Absorption spectrum (380–700 nm) of pure water. 2. Integrating cavity measurements. Appl Opt 36(33):8710–8723CrossRefGoogle Scholar
  40. Prieur L, Sathyendranath S (1981) An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials. Limnol Oceanogr 26(4):671–689CrossRefGoogle Scholar
  41. Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Duerr H, Meybeck M, Ciais P, Guth P (2013) Global carbon dioxide emissions from inland waters. Nature 503(7476):355–359CrossRefGoogle Scholar
  42. Richardson J, Miller C, Maberly SC, Taylor P, Globevnik L, Hunter P, Jeppesen E, Mischke U, Moe SJ, Pasztaleniec A, Sondergaard M, Carvalho L (2018) Effects of multiple stressors on cyanobacteria abundance vary with lake type. Glob Chang Biol 24(11):5044–5055CrossRefGoogle Scholar
  43. Shan K, Li L, Wang X, Wu Y, Hu L, Yu G, Song L (2014) Modelling ecosystem structure and trophic interactions in a typical cyanobacterial bloom-dominated shallow Lake Dianchi, China. Ecol Model 291:82–95CrossRefGoogle Scholar
  44. Shang Y, Song K, Wen Z, Lyu L, Zhao Y, Fang C, Zhang B (2018) Characterization of CDOM absorption of reservoirs with its linkage of regions and ages across China. Environ Sci Pollut Res 25:16009–16023CrossRefGoogle Scholar
  45. Shi K, Zhang Y, Liu X, Wang M, Qin B (2014) Remote sensing of diffuse attenuation coefficient of photosynthetically active radiation in Lake Taihu using MERIS data. Remote Sens Environ 140:365–377CrossRefGoogle Scholar
  46. Shi K, Zhang Y, Xu H, Zhu G, Qin B, Huang C, Liu X, Zhou Y, Lv H (2015a) Long-term satellite observations of microcystin concentrations in Lake Taihu during cyanobacterial bloom periods. Environ Sci Technol 49(11):6448–6456CrossRefGoogle Scholar
  47. Shi K, Zhang Y, Zhu G, Liu X, Zhou Y, Xu H, Qin B, Liu G, Li Y (2015b) Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250 m MODIS-Aqua data. Remote Sens Environ 164:43–56CrossRefGoogle Scholar
  48. Shi K, Zhang Y, Zhu G, Qin B, Pan D (2018) Deteriorating water clarity in shallow waters: evidence from long term MODIS and in-situ observations. Int J Appl Earth Obs Geoinf 68:287–297CrossRefGoogle Scholar
  49. Smith RC, Baker KS (1978) The bio-optical state of ocean waters and remote sensing. Limnol Oceanogr 23(2):247–259CrossRefGoogle Scholar
  50. Song KS, Zang SY, Zhao Y, Li L, Du J, Zhang NN, Wang XD, Shao TT, Guan Y, Liu L (2013) Spatiotemporal characterization of dissolved carbon for inland waters in semi-humid/semi-arid region, China. Hydrol Earth Syst Sci 17(10):4269–4281CrossRefGoogle Scholar
  51. Song K, Ma J, Wen Z, Fang C, Shang Y, Zho Y, Wang M, Du J (2017) Remote estimation of K-d (PAR) using MODIS and Landsat imagery for turbid inland waters in Northeast China. ISPRS J Photogramm Remote Sens 123:159–172CrossRefGoogle Scholar
  52. Song K, Wen Z, Shang Y, Yang H, Lyu L, Liu G, Fang C, Du J, Zhao Y (2018a) Quantification of dissolved organic carbon (DOC) storage in lakes and reservoirs of mainland China. J Environ Manag 217:391–402CrossRefGoogle Scholar
  53. Song K, Wen Z, Xu Y, Yang H, Lyu L, Zhao Y, Fang C, Shang Y, Du J (2018b) Dissolved carbon in a large variety of lakes across five limnetic regions in China. J Hydrol 563:143–154CrossRefGoogle Scholar
  54. Song K, Li S, Wen Z, Lyu L, Shang Y (2018c) Characterization of chromophoric dissolved organic matter in lakes on the Tibet Plateau, China, using spectroscopic analysis. Biogeosci Discuss 2018:1–50CrossRefGoogle Scholar
  55. Stambler N (2005) Bio-optical properties of the northern Red Sea and the Gulf of Eilat (Aqaba) during winter 1999. J Sea Res 54(3):186–203CrossRefGoogle Scholar
  56. V-Balogh K, Nemeth B, Voros L (2009) Specific attenuation coefficients of optically active substances and their contribution to the underwater ultraviolet and visible light climate in shallow lakes and ponds. Hydrobiologia 632(1):91–105CrossRefGoogle Scholar
  57. Wang SM, Dou HS (1998) Record of Chinese lakes. Science Press: 1-15Google Scholar
  58. Weidemann AD, Bannister TT, Effler SW, Johnson DL (1985) Particulate and optical properties during CaCO3 precipitation in Otisco Lake. Limnol Oceanogr 30(5):1078–1083CrossRefGoogle Scholar
  59. Wen ZD, Song KS, Zhao Y, Du J, Ma JH (2016) Influence of environmental factors on spectral characteristics of chromophoric dissolved organic matter (CDOM) in Inner Mongolia Plateau, China. Hydrol Earth Syst Sci 20(2):787–801CrossRefGoogle Scholar
  60. Wen Z, Song K, Shang Y, Fang C, Li L, Lv L, Lv X, Chen L (2017) Carbon dioxide emissions from lakes and reservoirs of China: a regional estimate based on the calculated pCO2. Atmos Environ 170(Supplement C):71–81CrossRefGoogle Scholar
  61. Wetzel RG (2001) Limnology: lake and river ecosystems, Third edn. Academic Press, CaliforniaGoogle Scholar
  62. Yamaguchi H, Katahira R, Ichimi K, Tada K (2013) Optically active components and light attenuation in an offshore station of Harima Sound, eastern Seto Inland Sea, Japan. Hydrobiologia 714(1):49–59CrossRefGoogle Scholar
  63. Yan L, Sun M, Yao X, Gong N, Li X, Qi M (2018) Lake water in the Tibet Plateau: quality change and current status evaluation. Acta Sci Circumst 38(3):900–910Google Scholar
  64. Yuan Y, Jiang M, Liu X, Yu H, Otte ML, Ma C, Her YG (2018) Environmental variables influencing phytoplankton communities in hydrologically connected aquatic habitats in the Lake Xingkai basin. Ecol Indic 91:1–12CrossRefGoogle Scholar
  65. Zhang Y, Zhang B, Ma R, Feng S, Le C (2007) Optically active substances and their contributions to the underwater light climate in Lake Taihu, a large shallow lake in China. Fundam Appl Limnol 170(1):11–19CrossRefGoogle Scholar
  66. Zhang G, Xie H, Yao T, Kang S (2013) Water balance estimates of ten greatest lakes in China using ICESat and Landsat data. Chin Sci Bull 58(31):3815–3829CrossRefGoogle Scholar
  67. Zhang M, Shi X, Yang Z, Yu Y, Shi L, Qin B (2018a) Long-term dynamics and drivers of phytoplankton biomass in eutrophic Lake Taihu. Sci Total Environ 645:876–886CrossRefGoogle Scholar
  68. Zhang Y, Zhou Y, Shi K, Qin B, Yao X, Zhang Y (2018b) Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication. Water Res 131:255–263CrossRefGoogle Scholar
  69. Zhao Y, Song K, Wen Z, Li L, Zang S, Shao T, Li S, Du J (2016) Seasonal characterization of CDOM for lakes in semiarid regions of Northeast China using excitation–emission matrix fluorescence and parallel factor analysis (EEM–PARAFAC). Biogeosciences 13(5):1635–1645CrossRefGoogle Scholar
  70. Zhao H, Zhu L, Wu C, Meng B, Zhou Y, Jia X (2018) Distribution characteristics analysis of algal bloom in Chaohu Lake based on the sky~earth collaborative method. China Environ Sci 38(6):2297–2303Google Scholar
  71. Zheng Z, Ren J, Li Y, Huang C, Liu G, Du C, Lyu H (2016) Remote sensing of diffuse attenuation coefficient patterns from Landsat 8 OLI imagery of turbid inland waters: a case study of Dongting Lake. Sci Total Environ 573:39–54CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
  2. 2.School of Environment and PlanningLiaocheng UniversityLiaochengChina
  3. 3.Jilin Jianzhu UniversityChangchunChina
  4. 4.Harbin UniversityHarbinChina

Personalised recommendations