Advertisement

The corrosion process caused by the activity of the anaerobic sporulated bacterium Clostridium celerecrescens on API XL 52 steel

  • Oswaldo Arturo Ramos MonroyEmail author
  • Nora Ruiz OrdazEmail author
  • Mónica Jazmín Hernández Gayosso
  • Cleotilde Juárez Ramírez
  • Juvencio Galíndez Mayer
Research Article
  • 31 Downloads

Abstract

The microbial corrosion of oil and gas pipes is one of the problems occurring in the oil industry. Various mechanisms explaining microbial corrosion have been demonstrated. Commonly, biocorrosion is attributed to sulfate-reducing bacteria. Also, it has recently been reported that microbial species can connect their electron transport system to metal electrodes. In this research, two spore-forming bacteria isolated in different years from a gas pipeline were identified by biochemical techniques and by 16S rDNA amplification, sequencing, and comparison with the NCBI database. Isolates were also compared between them using molecular techniques as the restriction patterns, unique for 16S rDNA (ARDRA), and the profile of the amplified bit from the genomic DNA, using an unspecific primer (RAPD). The results obtained showed that both isolates corresponded to Clostridium celerecrescens with a 99% similarity according to the sequence reported on the NCBI database. Also, the ARDRA and RAPD electrophoretic profiles of both strains were identical, and no plasmids were found in the strains. Thus, it can be settled that this bacterium is persistent in the environment prevailing in gas pipelines. Also, it was demonstrated that the bacterial secretion of organic acids contributes to the pitting and general biocorrosion of API XL 52 steel. The rates of corrosion obtained, approximately after 40 days, were correlated with the presence and metabolic activity of C. celerecrescens on the metallic surfaces.

Keywords

Biofilm API XL steel Biocorrosion Organic acids Scanning electron microscopy Energy-dispersive X-ray spectroscopy 

Notes

Acknowledgments

The authors wish to thank to the Instituto Mexicano del Petróleo for carrying ESEM and EDS studies and to the Instituto Politécnico Nacional and SNI-CONACYT for the fellowships to Ramos-Monroy, Ruiz-Ordaz, Juárez-Ramírez, and Galíndez-Mayer.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. American Petroleum Institute (1990) API RP 38. Recommended practice for biological analysis of subsurface injection water. API, Washington, D.CGoogle Scholar
  2. Arais LR, Barbosa AV, Andrade JRC, Gomes TAT, Asensi MD, Aires CAM, Cerqueira (2018) Zoonotic potential of atypical enteropathogenic Escherichia coli (aEPEC) isolated from puppies with diarrhoea in Brazil. Vet Microbiol 227:45–51Google Scholar
  3. ASTM G 01-03 (2011) Standard practice for preparing, cleaning and evaluating corrosion test specimens, ASTM book of standards, vol 3.02, West ConshohockenGoogle Scholar
  4. ASTM G 31-72 (2011) Standard practice for laboratory immersion corrosion testing of metals, ASTM book of standards, vol 3.02, West ConshohockenGoogle Scholar
  5. Balows A, Trüper GH, Dworkin M, Harder W, Schleifer HK (1992) The prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, and applications, vol 2. Springer-Verlag, New YorkGoogle Scholar
  6. Batmanghelich F, Li L, Seo Y (2017) Infleunce of multispecies biofilms of Pseudomonas aeruginosa and Desulfovibrio vulgaris on the corrosion of cast iron. Corros Sci 121:94–104Google Scholar
  7. Beech IB (2004) Corrosion of technical materials in the presence of biofilms- current understanding and state-of-the-art methods of study. Int Biodeterior Biodegradation 53:177–183Google Scholar
  8. Beech IW, Gaylarde CC (1999) Recent advances in the study of biocorrosion: an overview. Rev Microbiol 30(3):117–190Google Scholar
  9. Beech IB, Sunner J (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15:181–186Google Scholar
  10. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523Google Scholar
  11. Blodgett R (2003) Bacteriological Analytical Manual. Appendix 2. Most probable number from serial dilutions. U.S. Food and Drug Administration, USAGoogle Scholar
  12. Boakye EY, Dotse-Lawson IY, Akyae-Danso SK, Kwame-Offei S (2016) Characterization and diversity of rhizobia nodulating selected tree legumes in Ghana. Symbiosis. 69:89–99Google Scholar
  13. Boopathy R, Daniels L (1991) Effect of pH on anaerobic mild steel corrosion by methanogenic bacteria. Appl Environ Microbiol 57(7):2104–2108Google Scholar
  14. Cato EP, George WL, Finegold SM, Clostridium G (1986) Prazmowski 1880, 23 AL. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, BaltimoreGoogle Scholar
  15. Cauich SP, Alatriste MF, García CE, Aquino SC (2001) Identification of anaerobic non spore-forming Gram-positive bacilli by biochemical tests and gas-liquid chromatography. Rev Latinoam Microbiol 43:27–35Google Scholar
  16. Cervantes-Tobón A, Godínez-Salcedo JG, González-Velázquez JL, Díaz-Cruz M (2014) Corrosion rates of API 5L X-52 and X-65 steels in synthetic brines and brines with H2S as a function of rate in a rotating cylinder electrode. Int J Electrochem Sci 9:2454–2469Google Scholar
  17. Characklis WG, Marshall KC (1990) Biofilms. Wiley, New YorkGoogle Scholar
  18. Chávez TCB, Peña SG, Rodríguez AG, Reyes MMR, Duarte EE, Taylor ML (2005) Aislamiento de Histoplasma capsulatum en los murciélagos Desmodus rotundus (no migratorio) y Tadarida brasiliensis (migratorio de larga distancia): primeros registros en México. Rev Mex Mic 20:61–70Google Scholar
  19. Collins MD, Lawson PA, Willems A (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:674–679Google Scholar
  20. Costerton JW, Geesey GC, Cheng KJ (1978) How bacteria stick. Sci Am 238:86–95Google Scholar
  21. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890Google Scholar
  22. Dubiel M, Hsu CH, Chien CC, Mansfeld F, Newman DK (2002) Microbial iron respiration can protect steel from corrosion. Appl Environ Microbiol 68(3):1440–1445Google Scholar
  23. Eid MM, Duncan KE, Tanner RS (2018) A semi-continuous system for monitoring microbially influenced corrosion. J Microbiol Methods 150:55–60Google Scholar
  24. Enning D, Garrelfs J (2014) Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol 80(4):1226–1236Google Scholar
  25. Feugeas F, Magnin JP, Cornet A, Rameau JJ (1997) Corrosion influence par les microorganisms: influence du biofilm sur la corrosion des aciers, techniques et resultants récents. J Phys III 7:631–663Google Scholar
  26. Forbes BA, Sahm DF, Weissfeld AS, Treviño EA (2002) Diagnostic microbiology, 11th edn. Mosby Inc., PhiladelphiaGoogle Scholar
  27. Gaylarde CC, Johnston JM (1982) The effect of Vibrio anguillarum on the anaerobic corrosion of mild steel by Desulfovibrio vulgaris. IBBS 18:111–116Google Scholar
  28. Gaylarde CC, Videla HA (1987) Localised corrosion induced by marine Vibrio. Int Biodeterior 23:91–104Google Scholar
  29. Hernández GMJ, Zavala OG, Ruiz ON, Juárez RC, García ER, Padilla VA (2004) Microbial consortium influence upon steel corrosion rate, using polarisation resistance and electrochemical noise techniques. Electrochim Acta 49:4295–4301Google Scholar
  30. Holt JG, Kieg NR, Sneath PHA, Steley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams & Wilkins, BaltimoreGoogle Scholar
  31. Hopkins KL, Hilton AC (2001) Restriction endonuclease analysis of RAPD-PCR amplicons derived from Shiga-like toxin-producing Escherichia coli O157 isolates. J Med Microbiol 50:90–95Google Scholar
  32. Javed MA, Stoddart PR, Wade SA (2015) Corrosion of carbon steel by sulphate reducing bacteria: initial attachment and the role of ferrous ions. Corros Sci 93:48–57Google Scholar
  33. Jia R, Yang D, Li Y, Xu D, Gu T (2017) Mitigation of the Desulfovibrio vulgaris biofilm using alkyldimethylbenzylammonium chloride enhanced by D-amino acids. Int Biodeterior Biodegrad 117:97–104Google Scholar
  34. Jia R, Tan JL, Jin P, Blackwood DJ, Xu D, Gu T (2018) Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm. Corros Sci 130:1–11Google Scholar
  35. Jia R, Unsal T, Xub D, Lekbach Y, Gu T (2019) Microbiologically influenced corrosion and current mitigation strategies: a state of the art review. Int Biodeterior Biodegrad 137:42–58Google Scholar
  36. Koneman EW, Allen SD, Janda WM, Schreckenberger PC, Winn WC (1997) Color atlas and textbook of diagnostic microbiology, 5th edn. Lippincott-Raven Publishers, PhiladelphiaGoogle Scholar
  37. Koskey G, Mburu SW, Kimiti JM, Ombori O, Maingi JM, Njeru EM (2018) Genetic characterization and diversity of Rhizobium isolated from root nodules of mid-altitude climbing bean (Phaseolus vulgaris L.) varieties. Front Microbiol 9:968Google Scholar
  38. Li Y, Jia R, Al-Mahamedh HH, Xu D, Gu T (2016) Enhanced biocide mitigation of field biofilm consortia by a mixture of d-amino acids. Front Microbiol 7:896Google Scholar
  39. Li Q, Wang J, Xing X, Hu W (2018a) Corrosion behavior of X65 steel in seawater containing sulfate reducing bacteria under aerobic conditions. Bioelechem. 122:40–50Google Scholar
  40. Li Y, Xu D, Chen C, Li X, Jia R, Zhang D, Sand W, Wang F, Gu T (2018b) Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review. J Mater Sci Technol 34:1713–1718Google Scholar
  41. Liduino VS, Lutterbach MTS, Sérvulo EFC (2018) Biofilm activity on corrosion of API 5L X65 steel weld bead. Colloids Surf B 172:43–50Google Scholar
  42. Liu H, Cheng YF (2017) Mechanism of microbiologically influenced corrosion of X52 pipeline steel in a wet soil containing sulfate-reduced bacteria. Electrochim Acta 253:368–378Google Scholar
  43. Liu W, Marsh T, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63(11):4516–4522Google Scholar
  44. Liu H, Xu D, Dao AQ, Zhang G, Lv Y, Liu H (2015) Study of corrosion behavior and mechanism of carbon steel in the presence of Chlorella vulgaris. Corros Sci 101:84–93Google Scholar
  45. Madico G, Akopyants SN, Berg ED (1995) Arbitrarily primed PCR DNA fingerprinting of Escherichia coli 0157:H7 strains by using templates from boiled cultures. J Clin Microbiol 33(6):1534–1536Google Scholar
  46. Maleki-Kakelar H, Barzegari A, Hanifian S, Barar J, Omidi Y (2019) Isolation and molecular identification of Lactobacillus with probiotic potential from abomasums driven rennet. Food Chem 272:709–714Google Scholar
  47. Marchal R, Chaussepied B, Warzywoda M (2001) Effect of ferrous ion availability on growth of a corroding sulphate-reducing bacterium. Int Biodeterior Biodegrad 47:125–131Google Scholar
  48. Massol DAA, Weller R, Rios HL, Zhou ZJ, Hickey FR, Tiedje MJS (1997) Succession and convergence of biofilm communities in fixed-film reactors treating aromatic hydrocarbons in groundwater. Appl Environ Microbiol 63(1):270–276Google Scholar
  49. Matini M, Roostaei M, Fallah M, Maghsood AH, Saidijam M, Fasihi-Harandi M (2018) Genetic identification of Echinococcus granulosus isolates in Hamadan, Western Inan. Iran J Parasitol 13(3):423–429Google Scholar
  50. NACE Standard RP0775-2005 (2005) Preparation, installation, analysis and interpretation of corrosion coupons in oilfield operations. Houston, Texas, USAGoogle Scholar
  51. NACE Standard TM0194-2004. Field monitoring of bacterial growth in oilfield systems. NACE International. Houston. 2004Google Scholar
  52. Nisiotou A, Dourou D, Filippousi ME, Banilas G, Tassou C (2014) Weissella uvarum sp. nov., isolated from wine grapes. Int J Syst Evol Microbiol 64:3885–3890Google Scholar
  53. Nolasco-Cancino H, Santiago-Urbina JA, Wacher C, Ruíz-Terán F (2018) Predominant yeasts during artisanal mezcal fermentation and their capacity to ferment maguey juice. Front Microbiol 9:2900Google Scholar
  54. Padilla VA, García OE, Alazard D (2006) Comparative electrochemical noise study of the corrosion process of carbon steel by the sulfate-reducing bacterium Desulfovibrio alaskensis under nutritionally rich and oligotrophic culture conditions. Electrochim Acta 51:3841–3847Google Scholar
  55. Pandey AK, Nagpure NS, Trivedi SP (2018) Genotoxicity assessment of pesticide profenofos in freshwater fish Channa punctatus (Bloch) using comet assay and random amplified polymorphic DNA (RAPD). Chemosphere. 211:316–323Google Scholar
  56. Park JM, Yang CY, Park H, Kim YM (2014) Development of a genus-specific PCR combined with ARDRA for the identification of Leuconostoc species in kimichi. Food Sci Biotechnol 23(2):511–516Google Scholar
  57. PEMEX (2000) Protección interior de ductos con inhibidores. Comité de Normalización de Petróleos Mexicanos. Norma NRF-005-Pemex-2000Google Scholar
  58. Potekhina JS, Sherisheva NG, Povetkina LP, Pospelov AP, Rakitina TA, Warnecke F, Gottschalk G (1999) Role of microorganisms in corrosion inhibition metals in aquatic habitats. Appl Microbiol Biotechnol 52:639–646Google Scholar
  59. Rajala P, Carpén L, Vepsäläinen M, Raulio M, Sohlberg E, Bomberg M (2015) Microbially induced corrosion of carbon steel in deep groundwater environment. Front Microbiol 6:647Google Scholar
  60. Ramos-Monroy OA, Hernández-Gayosso MJ, Ruiz-Ordaz N, Zavala-Olivares G, Juárez-Ramírez C (2011) Corrosion of API XL 52 steel in presence of Clostridium celerecrescens. Mater Corros 62:878–883Google Scholar
  61. Relman DA (1993) Universal bacterial 16S rRNA amplification and sequencing. In: Persing DH, Smith TF, Tenover FC, White TJ (eds) Diagnostic molecular microbiology: principles and applications. American Society for Microbiology, Washington, DC, pp 489–495Google Scholar
  62. Rizzo A (1980) Rapid Gas-chromatographic method for identification of metabolic products of anaerobic bacteria. J Clin Microbiol 11:418–421Google Scholar
  63. Sanders P, Hamilton W (1984) Biological and corrosion activities of sulphate reducing bacteria in industrial process plant. Biologically Induced Corrosion. NACE International, Houston, pp 115–123Google Scholar
  64. Spano G, Beneduce L, Tarantino D, Zapparoli G, Massa S (2002) Characterization of Lactobacillus plantarum from wine must by PCR species-specific and RAPD-PCR. Lett Appl Microbiol 35:370–374Google Scholar
  65. Torres-Bautista BE, Wikiel AJ, Datsenko I, Vera M, Sand W, Seyeux A, Zanna S, Frateur I, Marcus P (2015) Influence of extracellular polymeric substances (EPS) from Pseudomonas NCIMB 2021 on the corrosion behaviour of 70Cu-30Ni alloy in seawater. J Electroanal Chem 737:184–197Google Scholar
  66. Videla HA (1996) Manual of Biocorrosion. CRC Lewis Publishers, Boca RatonGoogle Scholar
  67. Voordouw G, Menon P, Pinnock T, Sharma M, Shen Y, Venturelli A, Voordouw J, Sexton A (2016) Use of homogeneously-sized carbon steel ball bearings to study microbially-influenced corrosion in oil field samples. Front Microbiol 7:351Google Scholar
  68. Wang H, He L, Song J, Cui W, Zhang Y, Jia C, Francis D, Rogers HJ, Sun L, Tai P, Hui X, Yang Y, Liu W (2016) Cadmium-induced genomic instability in Arabidopsis: molecular toxicological biomarkers for early diagnosis of cadmium stress. Chemosphere. 150:258–265Google Scholar
  69. Wojciechowska-Koszko I, Krasnodębska-Szponder B, Mnichowska-Polanowska M, Szymaniak L, Czekajło-Kołodziej U, Giedrys-Kalemba S (2013) Optimization of RAPD-PCR method for Candida albicans fingerprinting. Mikologia Lekarska 20(3):89–56Google Scholar
  70. Xu D, Li Y, Gu T (2016) Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry. 110:52–58Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Oswaldo Arturo Ramos Monroy
    • 1
    Email author
  • Nora Ruiz Ordaz
    • 1
    Email author
  • Mónica Jazmín Hernández Gayosso
    • 2
  • Cleotilde Juárez Ramírez
    • 1
  • Juvencio Galíndez Mayer
    • 1
  1. 1.Instituto Politécnico Nacional, Escuela Nacional de Ciencias BiológicasCDMXMéxico
  2. 2.Instituto Mexicano del Petróleo, Grupo de CorrosiónCDMXMéxico

Personalised recommendations