Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 26, pp 26449–26471 | Cite as

A review on global metal accumulators—mechanism, enhancement, commercial application, and research trend

  • Aishath Naila
  • Gerrit Meerdink
  • Vijay Jayasena
  • Ahmad Z. Sulaiman
  • Azilah B. AjitEmail author
  • Graziella Berta
Review Article
  • 195 Downloads

Abstract

The biosphere is polluted with metals due to burning of fossil fuels, pesticides, fertilizers, and mining. The metals interfere with soil conservations such as contaminating aqueous waste streams and groundwater, and the evidence of this has been recorded since 1900. Heavy metals also impact human health; therefore, the emancipation of the environment from these environmental pollutants is critical. Traditionally, techniques to remove these metals include soil washing, removal, and excavation. Metal-accumulating plants could be utilized to remove these metal pollutants which would be an alternative option that would simultaneously benefit commercially and at the same time clean the environment from these pollutants. Commercial application of pollutant metals includes biofortification, phytomining, phytoremediation, and intercropping. This review discusses about the metal-accumulating plants, mechanism of metal accumulation, enhancement of metal accumulation, potential commercial applications, research trends, and research progress to enhance the metal accumulation, benefits, and limitations of metal accumulators. The review identified that the metal accumulator plants only survive in low or medium polluted environments with heavy metals. Also, more research is required about metal accumulators in terms of genetics, breeding potential, agronomics, and the disease spectrum. Moreover, metal accumulators’ ability to uptake metals need to be optimized by enhancing metal transportation, transformation, tolerance to toxicity, and volatilization in the plant. This review would benefit the industries and environment management authorities as it provides up-to-date research information about the metal accumulators, limitation of the technology, and what could be done to improve the metal enhancement in the future.

Keywords

Heavy metals Environmental waste management Phytoremediation Metal accumulators Toxicity Biofortification Phytomining, intercropping 

Notes

References

  1. Abou-Shanab R, Angle J, Delorme T, Chaney R, Van Berkum P, Moawad H et al (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158(1):219–224Google Scholar
  2. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ - Sci 26(1):1–20.  https://doi.org/10.1016/j.jksus.2013.05.001 Google Scholar
  3. Akhtar ABT, Yasar A, Ali R, Irfan R (2017) Phytoremediation using aquatic macrophytes. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: Management of Environmental Contaminants, Volume 5. Springer International Publishing, Cham, pp 259–276Google Scholar
  4. Anning AK, Akoto R (2018) Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides. Ecotoxicol Environ Saf 148:97–104.  https://doi.org/10.1016/j.ecoenv.2017.10.014 Google Scholar
  5. Antoniadis V, Polyzois T, Golia EE, Petropoulos SA (2017) Hexavalent chromium availability and phytoremediation potential of Cichorium spinosum as affect by manure, zeolite and soil ageing. Chemosphere 171:729–734.  https://doi.org/10.1016/j.chemosphere.2016.11.146 Google Scholar
  6. Ashraf MA, Maah M, Yusoff I (2011) Heavy metals accumulation in plants growing in ex tin mining catchment. Int J Environ Sci Technol 8(2):401–416Google Scholar
  7. Azaizeh HA, Gowthaman S, Terry N (1997) Microbial selenium volatilization in rhizosphere and bulk soils from a constructed wetland. J Environ Qual 26:666–672.  https://doi.org/10.2134/jeq1997.00472425002600030011x Google Scholar
  8. Bani A, Echevarria G, Sulçe S, Morel JL, Mullai A (2007) In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant Soil 293(1–2):79–89Google Scholar
  9. Bani A, Echevarria G, Sulçe S, Morel JL (2015) Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremediation 17(2):117–127.  https://doi.org/10.1080/15226514.2013.862204 Google Scholar
  10. Bañuelos GS, Meek DW (1989) Selenium accumulation in selected vegetables. J Plant Nutr 12(10):1255–1272.  https://doi.org/10.1080/01904168909364034 Google Scholar
  11. Bañuelos GS, Shannon MC, Ajwa H, Draper JH, Jordahl J, Licht J (1999) Phytoextraction and accumulation of boron and selenium by poplar (Populus) hybrid clones. Int J Phytoremediation 1(1):81–96Google Scholar
  12. Barbaroux R, Plasari E, Mercier G, Simonnot MO, Morel JL, Blais JF (2012) A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale. Sci Total Environ 423:111–119.  https://doi.org/10.1016/j.scitotenv.2012.01.063 Google Scholar
  13. Bech J, Duran P, Roca N, Poma W, Sánchez I, Roca-Pérez L, Boluda R, Barceló J, Poschenrieder C (2012) Accumulation of Pb and Zn in Bidens triplinervia and Senecio sp. spontaneous species from mine spoils in Peru and their potential use in phytoremediation. J Geochem Explor 123:109–113.  https://doi.org/10.1016/j.gexplo.2012.06.021 Google Scholar
  14. Bech J, Roca N, Tume P, Ramos-Miras J, Gil C, Boluda R (2016) Screening for new accumulator plants in potential hazards elements polluted soil surrounding Peruvian mine tailings. CATENA 136:66–73.  https://doi.org/10.1016/j.catena.2015.07.009 Google Scholar
  15. Bechtold N, Bouchez D (1995) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration Gene transfer to plants. Springer, Berlin, pp 19–23Google Scholar
  16. Belouchrani AS, Mameri N, Abdi N, Grib H, Lounici H, Drouiche N (2016) Phytoremediation of soil contaminated with Zn using Canola (Brassica napus L). Ecol Eng 95:43–49.  https://doi.org/10.1016/j.ecoleng.2016.06.064 Google Scholar
  17. Bert V, Meerts P, Saumitou-Laprade P, Salis P, Gruber W, Verbruggen N (2003) Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant Soil 249(1):9–18Google Scholar
  18. Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science & Technology 31(3):860–865.  https://doi.org/10.1021/es960552a Google Scholar
  19. Bothe H (2011) Plants in heavy metal soils Detoxification of heavy metals. Springer, Berlin, pp 35–57Google Scholar
  20. Bouis H, Saltzman A, Low J, Ball A, Covic N (2017) An overview of the landscape and approach for biofortification in Africa. Afr J Food Agric Nutr Dev 17(2):11848–11864Google Scholar
  21. Bourg A, Loch JG (1995) Mobilization of heavy metals as affected by pH and redox conditions Biogeodynamics of pollutants in soils and sediments. Springer, Berlin, pp 87–102Google Scholar
  22. Brewer EP, Saunders JA, Angle JS, Chaney RL, McIntosh MS (1999) Somatic hybridization between the zinc accumulator Thlaspi caerulescens and Brassica napus. Theor Appl Genet 99(5):761–771.  https://doi.org/10.1007/s001220051295 Google Scholar
  23. Brooks RR, Lee J, Reeves RD, Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57.  https://doi.org/10.1016/0375-6742(77)90074-7 Google Scholar
  24. Cakmak I, Pfeiffer WH, McClafferty B (2010) REVIEW: biofortification of durum wheat with zinc and iron. Cereal Chem J 87(1):10–20.  https://doi.org/10.1094/CCHEM-87-1-0010 Google Scholar
  25. Carbonell AA, Aarabi MA, DeLaune RD, Gambrell RP, Patrick WH (1998) Bioavailability and uptake of arsenic by wetland vegetation: effects on plant growth and nutrition. J Environ Sci Health A 33(1):45–66.  https://doi.org/10.1080/10934529809376717 Google Scholar
  26. Cesaro P, Cattaneo C, Bona E, Berta G, Cavaletto M (2015) The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases. Sci Rep 5:14525.  https://doi.org/10.1038/srep14525 https://www.nature.com/articles/srep14525#supplementary-information. Accessed 6/5/2017
  27. Chaney RL (1983) Plant uptake of inorganic waste constituentsGoogle Scholar
  28. Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8(3):279–284.  https://doi.org/10.1016/S0958-1669(97)80004-3 Google Scholar
  29. Clemens S (2017) How metal hyperaccumulating plants can advance Zn biofortification. Plant Soil:1–10Google Scholar
  30. Cosio C, DeSantis L, Frey B, Diallo S, Keller C (2005) Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot 56(412):765–775.  https://doi.org/10.1093/jxb/eri062 Google Scholar
  31. Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110(3):715–719Google Scholar
  32. Dahmani-Muller H, van Oort F, Gélie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109(2):231–238.  https://doi.org/10.1016/S0269-7491(99)00262-6 Google Scholar
  33. Das S, Chou M-L, Jean J-S, Yang H-J, Kim PJ (2017) Arsenic-enrichment enhanced root exudates and altered rhizosphere microbial communities and activities in hyperaccumulator Pteris vittata. J Hazard Mater 325:279–287.  https://doi.org/10.1016/j.jhazmat.2016.12.006 Google Scholar
  34. de Abreu CA, Coscione AR, Pires AM, Paz-Ferreiro J (2012) Phytoremediation of a soil contaminated by heavy metals and boron using castor oil plants and organic matter amendments. J Geochem Explor 123:3–7Google Scholar
  35. De Knecht JA, Koevoets PLM, Verkleij JAC, Ernst WHO (1992) Evidence against a role for phytochelatins in naturally selected increased cadmium tolerance in Silene vulgaris (Moench) Garcke. New Phytol 122(4):681–688.  https://doi.org/10.1111/j.1469-8137.1992.tb00097.x Google Scholar
  36. de la Fuente V, Rufo L, Rodríguez N, Franco A, Amils R (2017) Comparison of iron localization in wild plants and hydroponic cultures of Imperata cylindrica (L.) P. Beauv. Plant Soil:1–11.  https://doi.org/10.1007/s11104-017-3251-8
  37. Deng DM, Shu WS, Zhang J, Zou HL, Lin Z, Ye ZH, Wong MH (2007) Zinc and cadmium accumulation and tolerance in populations of Sedum alfredii. Environ Pollut 147(2):381–386.  https://doi.org/10.1016/j.envpol.2006.05.024 Google Scholar
  38. Diaz G, Azcón-Aguilar C, Honrubia M (1996) Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant Soil 180(2):241–249Google Scholar
  39. Dietz K-J, Baier M, Krämer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants Heavy metal stress in plants. Springer, Berlin, pp 73–97Google Scholar
  40. Drozdova IV, Alekseeva-Popova NV, Kalimova IB, Belyaeva AI, Smirnova NA (2017) The accumulating ability and nickel tolerance of Brassicaceae species of the North Caucasus in connection with the problem of phytoremediation. J Geochem Explor 182:235–241Google Scholar
  41. Dushenkov V, Kumar PBAN, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environmental Science & Technology 29(5):1239–1245.  https://doi.org/10.1021/es00005a015 Google Scholar
  42. Ebbs SD, Lasat MM, Brady DJ, Cornish J, Gordon R, Kochian LV (1997) Phytoextraction of cadmium and zinc from a contaminated soil. J Environ Qual 26(5):1424–1430.  https://doi.org/10.2134/jeq1997.00472425002600050032x Google Scholar
  43. Egamberdiyeva D, Höflich G (2004) Effect of plant growth-promoting bacteria on growth and nutrient uptake of cotton and pea in a semi-arid region of Uzbekistan. J Arid Environ 56(2):293–301Google Scholar
  44. Ernst WHO (2006) Evolution of metal tolerance in higher plants. For Snow Landsc Res 80(3):251–274Google Scholar
  45. Escande V, Poullain C, Clavé G, Petit E, Masquelez N, Hesemann P, Grison C (2017) Bio-based and environmental input for transfer hydrogenation using EcoNi(0) catalyst in isopropanol. Appl Catal B Environ 210:495–503.  https://doi.org/10.1016/j.apcatb.2017.04.023 Google Scholar
  46. Farahat EA, Galal TM (2018) Trace metal accumulation by Ranunculus sceleratus: implications for phytostabilization. Environ Sci Pollut Res 25(5):4214–4222Google Scholar
  47. Fernando DR, Marshall A, Baker AJM, Mizuno T (2013) Microbeam methodologies as powerful tools in manganese hyperaccumulation research: present status and future directions. Front Plant Sci 4:319.  https://doi.org/10.3389/fpls.2013.00319 Google Scholar
  48. Flathman PE, Lanza GR (1998) Phytoremediation: current views on an emerging green technology. J Soil Contam 7(4):415–432.  https://doi.org/10.1080/10588339891334438 Google Scholar
  49. Förstner U, Wittmann GT (2012) Metal pollution in the aquatic environment. Springer Science & Business Media, BerlinGoogle Scholar
  50. Freeman JL, Zhang LH, Marcus MA, Fakra S, McGrath SP, Pilon-Smits EAH (2006) Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142(1):124–134.  https://doi.org/10.1104/pp.106.081158 Google Scholar
  51. Fu W, Franco A, Trapp S (2009) Methods for estimating the bioconcentration factor of ionizable organic chemicals. Environ Toxicol Chem 28(7):1372–1379Google Scholar
  52. Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, Dushenkov S, Logendra S, Gleba YY, Raskin I (1999) Use of plant roots for phytoremediation and molecular farming. Proc Natl Acad Sci 96(11):5973–5977.  https://doi.org/10.1073/pnas.96.11.5973 Google Scholar
  53. Gomez-Gonzalez MA, Serrano S, Laborda F, Garrido F (2014) Spread and partitioning of arsenic in soils from a mine waste site in Madrid province (Spain). Sci Total Environ 500–501:23–33.  https://doi.org/10.1016/j.scitotenv.2014.08.081 Google Scholar
  54. Goolsby EW, Mason CM (2015) Toward a more physiologically and evolutionarily relevant definition of metal hyperaccumulation in plants. Front Plant Sci 6:33.  https://doi.org/10.3389/fpls.2015.00033 Google Scholar
  55. Gratão PL, Prasad MNV, Cardoso PF, Lea PJ, Azevedo RA (2005) Phytoremediation: green technology for the clean up of toxic metals in the environment. Braz J Plant Physiol 17:53–64Google Scholar
  56. Ha NTH, Sakakibara M, Sano S (2011) Accumulation of indium and other heavy metals by Eleocharis acicularis: an option for phytoremediation and phytomining. Bioresour Technol 102(3):2228–2234.  https://doi.org/10.1016/j.biortech.2010.10.014 Google Scholar
  57. Halimaa P, Blande D, Baltzi E, Aarts MGM, Granlund L, Keinänen M, Kärenlampi SO, Kozhevnikova AD, Peräniemi S, Schat H, Seregin IV, Tuomainen M, Tervahauta AI (2019) Transcriptional effects of cadmium on iron homeostasis differ in calamine accessions of Noccaea caerulescens. Plant J 97(2):306–320.  https://doi.org/10.1111/tpj.14121 Google Scholar
  58. Hall J (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11Google Scholar
  59. Hammond JP, Bowen HC, White PJ, Mills V, Pyke KA, Baker AJ et al (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytol 170(2):239–260Google Scholar
  60. Han Y-H, Fu J-W, Chen Y, Rathinasabapathi B, Ma LQ (2016) Arsenic uptake, arsenite efflux and plant growth in hyperaccumulator Pteris vittata: role of arsenic-resistant bacteria. Chemosphere 144:1937–1942.  https://doi.org/10.1016/j.chemosphere.2015.10.096 Google Scholar
  61. Han Y-H, Fu J-W, Xiang P, Cao Y, Rathinasabapathi B, Chen Y, Ma LQ (2017a) Arsenic and phosphate rock impacted the abundance and diversity of bacterial arsenic oxidase and reductase genes in rhizosphere of As-hyperaccumulator Pteris vittata. J Hazard Mater 321:146–153.  https://doi.org/10.1016/j.jhazmat.2016.08.079 Google Scholar
  62. Han Y-H, Liu X, Rathinasabapathi B, Li H-B, Chen Y, Ma LQ (2017b) Mechanisms of efficient As solubilization in soils and As accumulation by As-hyperaccumulator Pteris vittata. Environ Pollut 227:569–577.  https://doi.org/10.1016/j.envpol.2017.05.001 Google Scholar
  63. Harumain ZA, Parker HL, Muñoz García A, Austin MJ, McElroy CR, Hunt AJ et al (2017) Toward financially viable phytoextraction and production of plant-based palladium catalysts. Environ Sci Technol 51(5):2992–3000Google Scholar
  64. Hou D, Wang K, Liu T, Wang H, Lin Z, Qian J, Lu L, Tian S (2017) Unique rhizosphere micro-characteristics facilitate phytoextraction of multiple metals in soil by the hyperaccumulating plant Sedum alfredii. Environ Sci Technol 51(10):5675–5684.  https://doi.org/10.1021/acs.est.6b06531 Google Scholar
  65. Hovenkamp P, Miyamoto F (2005) A conspectus of the native and naturalized species of Nephrolepis (Nephrolepidaceae) in the world. Blumea-Biodiversity, Evolution and Biogeography of Plants 50(2):279–322Google Scholar
  66. Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31(3):800–805.  https://doi.org/10.1021/es9604828 Google Scholar
  67. Huang JW, Blaylock MJ, Kapulnik Y, Ensley BD (1998) Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ Sci Technol 32(13):2004–2008.  https://doi.org/10.1021/es971027u Google Scholar
  68. Huckaby CS, Raghavan V (1981) Photocontrol of spore germination in the fern Thelypteris kunthii. Physiol Plant 51(1):19–22.  https://doi.org/10.1111/j.1399-3054.1981.tb00872.x Google Scholar
  69. Hussain S, Akram M, Abbas G, Murtaza B, Shahid M, Shah NS et al (2017) Arsenic tolerance and phytoremediation potential of Conocarpus erectus L. and Populus deltoides L. Int J Phytoremediation 0-0.  https://doi.org/10.1080/15226514.2017.1303815
  70. Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70(5):2667–2677.  https://doi.org/10.1128/AEM.70.5.2667-2677.2004 Google Scholar
  71. Imran M, Rehim A (2017) Zinc fertilization approaches for agronomic biofortification and estimated human bioavailability of zinc in maize grain. Arch Agron Soil Sci 63(1):106–116.  https://doi.org/10.1080/03650340.2016.1185660 Google Scholar
  72. Isaure M-P, Huguet S, Meyer C-L, Castillo-Michel H, Testemale D, Vantelon D, Saumitou-Laprade P, Verbruggen N, Sarret G (2015) Evidence of various mechanisms of Cd sequestration in the hyperaccumulator Arabidopsis halleri, the non-accumulator Arabidopsis lyrata, and their progenies by combined synchrotron-based techniques. J Exp Bot 66(11):3201–3214.  https://doi.org/10.1093/jxb/erv131 Google Scholar
  73. Kalinowski B, Liermann L, Brantley S, Barnes A, Pantano C (2000) X-ray photoelectron evidence for bacteria-enhanced dissolution of hornblende. Geochim Cosmochim Acta 64(8):1331–1343Google Scholar
  74. Kerkeb L, Krämer U (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol 131(2):716–724.  https://doi.org/10.1104/pp102.010686 Google Scholar
  75. Kozhevnikova AD, Seregin IV, Gosti F, Schat H (2017) Zinc accumulation and distribution over tissues in Noccaea сaerulescens in nature and in hydroponics: a comparison. Plant Soil 411(1):5–16.  https://doi.org/10.1007/s11104-016-3116-6 Google Scholar
  76. Krämer U (2010a) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534Google Scholar
  77. Krämer U (2010b) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61(1):517–534.  https://doi.org/10.1146/annurev-arplant-042809-112156 Google Scholar
  78. Krantz-Rülcker C, Frändberg E, Schnürer J (1995) Metal loading and enzymatic degradation of fungal cell walls and chitin. Biometals 8(1):12–18Google Scholar
  79. Krisnayanti BD, Anderson CW, Sukartono S, Afandi Y, Suheri H, Ekawanti A (2016) Phytomining for artisanal gold mine tailings management. Minerals 6(3):84Google Scholar
  80. Krzaklewski W, Pietrzykowski M (2002) Selected physico-chemical properties of zinc and lead ore tailings and their biological stabilisation. Water Air Soil Pollut 141(1–4):125–141Google Scholar
  81. Küpper H, Lombi E, Zhao F-J, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212(1):75–84.  https://doi.org/10.1007/s004250000366 Google Scholar
  82. Ledin M (2000) Accumulation of metals by microorganisms—processes and importance for soil systems. Earth Sci Rev 51(1):1–31.  https://doi.org/10.1016/S0012-8252(00)00008-8 Google Scholar
  83. Lessl JT, Guan DX, Sessa E, Rathinasabapathi B, Ma LQ (2015) Transfer of arsenic and phosphorus from soils to the fronds and spores of arsenic hyperaccumulator Pteris vittata and three non-hyperaccumulators. Plant Soil 390(1–2):49–60Google Scholar
  84. Liu X, Fu JW, Da Silva E, Shi XX, Cao Y, Rathinasabapathi B et al (2017) Microbial siderophores and root exudates enhanced goethite dissolution and Fe/As uptake by As-hyperaccumulator Pteris vittata. Environ Pollut 223:230–237Google Scholar
  85. Liu S, Ali S, Yang R, Tao J, Ren B (2019) A newly discovered Cd-hyperaccumulator Lantana camara L. J Hazard Mater 371:233–242.  https://doi.org/10.1016/j.jhazmat.2019.03.016 Google Scholar
  86. Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409(6820):579–579Google Scholar
  87. Ma L, Wang L, Jia Y, Yang Z (2016) Arsenic speciation in locally grown rice grains from Hunan Province, China: spatial distribution and potential health risk. Sci Total Environ 557-558:438–444.  https://doi.org/10.1016/j.scitotenv.2016.03.051 Google Scholar
  88. Macek T, Macková M, Káš J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18(1):23–34.  https://doi.org/10.1016/S0734-9750(99)00034-8 Google Scholar
  89. Map Resources (2008) World map - political. Retrieved from https://geology.com/world/world-map.shtml. Accessed 6/5/2017
  90. Massa N, Andreucci F, Poli M, Aceto M, Barbato R, Berta G (2010) Screening for heavy metal accumulators amongst autochtonous plants in a polluted site in Italy. Ecotoxicol Environ Saf 73(8):1988–1997Google Scholar
  91. McGrath SP, Zhao F-J (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14(3):277–282.  https://doi.org/10.1016/S0958-1669(03)00060-0 Google Scholar
  92. McGrath SP, Zhao FJ, Lombi E (2002) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. In: Powlson DS, Bateman GL, Davies KG, Gaunt JL, Hirsch PR (eds) Interactions in the root environment: an integrated approach: proceedings of the millenium conference on rhizosphere interactions, IACR-Rothamsted, United Kingdom 10–12 April, 2001. Springer Netherlands, Dordrecht, pp 207–214Google Scholar
  93. Meharg AA, Jardine L (2003) Arsenite transport into paddy rice (Oryza sativa) roots. New Phytol 157(1):39–44.  https://doi.org/10.1046/j.1469-8137.2003.00655.x Google Scholar
  94. Mello JIDO, Barbedo CJ, Salatino A, Figueiredo-Ribeiro RDCL (2010) Reserve carbohydrates and lipids from the seeds of four tropical tree species with different sensitivity to desiccation. Braz Arch Biol Technol 53(4):889–899Google Scholar
  95. Mendez MO, Maier RM (2007) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116(3):278–283Google Scholar
  96. Mleczek M, Gąsecka M, Waliszewska B, Magdziak Z, Szostek M, Rutkowski P, Kaniuczak J, Zborowska M, Budzyńska S, Mleczek P, Niedzielski P (2018) Salix viminalis L. - a highly effective plant in phytoextraction of elements. Chemosphere 212:67–78.  https://doi.org/10.1016/j.chemosphere.2018.08.055 Google Scholar
  97. Moameri M, Jafari M, Tavili A, Motasharezadeh B, Zare chahuoki MA (2017) Rangeland plants potential for phytoremediation of contaminated soils with lead, zinc, cadmium and nickel (Case Study: Rangelands around National Lead & Zinc Factory, Zanjan, Iran). J Rangel Sci 7(2):160–171Google Scholar
  98. Moffat AS (1999) Engineering plants to cope with metals. Science 285(5426):369–370.  https://doi.org/10.1126/science.285.5426.369 Google Scholar
  99. Mohsenzadeh F, Mohammadzadeh R (2018) Phytoremediation ability of the new heavy metal accumulator plants. Environ Eng Geosci:1–11Google Scholar
  100. Muthusaravanan S, Sivarajasekar N, Vivek J, Paramasivan T, Naushad M, Prakashmaran J et al (2018) Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett:1–21Google Scholar
  101. Nakajima H, Itoh K (2017) Relationship between metal and pigment concentrations in the Fe-hyperaccumulator moss Scopelophila ligulata. J Plant Res 130(1):135–141.  https://doi.org/10.1007/s10265-016-0867-3 Google Scholar
  102. Navari-Izzo F, Quartacci MF (2001) Phytoremediation of metals: tolerance mechanisms against oxidative stress. Minerva Biotecnol 13(2):73Google Scholar
  103. Nawab J, Khan S, Shah MT, Khan K, Huang Q, Ali R (2015) Quantification of heavy metals in mining affected soil and their bioaccumulation in native plant species. Int J Phytoremediation 17(9):801–813Google Scholar
  104. Nesler A, DalCorso G, Fasani E, Manara A, Di Sansebastiano GP, Argese E, Furini A (2017) Functional components of the bacterial CzcCBA efflux system reduce cadmium uptake and accumulation in transgenic tobacco plants. New Biotechnol 35:54–61.  https://doi.org/10.1016/j.nbt.2016.11.006 Google Scholar
  105. Nkrumah PN, Chaney RL, Morel JL (2018) Agronomy of ‘metal crops’ used in agromining Agromining: Farming for Metals. Springer, Berlin, pp 19–38Google Scholar
  106. Nriagu JO (1979) Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature 279(5712):409–411Google Scholar
  107. Palutoglu M, Akgul B, Suyarko V, Yakovenko M, Kryuchenko N, Sasmaz A (2018) Phytoremediation of cadmium by native plants grown on mining soil. Bull Environ Contam Toxicol 100(2):293–297Google Scholar
  108. Papoyan A, Piñeros M, Kochian LV (2007) Plant Cd2+ and Zn2+ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens. New Phytol 175(1):51–58.  https://doi.org/10.1111/j.1469-8137.2007.02073.x Google Scholar
  109. Parker HL, Rylott EL, Hunt AJ, Dodson JR, Taylor AF, Bruce NC, Clark JH (2014) Supported palladium nanoparticles synthesized by living plants as a catalyst for Suzuki-Miyaura reactions. PLoS One 9(1):e87192.  https://doi.org/10.1371/journal.pone.0087192 Google Scholar
  110. Pfeiffer WH, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci 47(Supplement_3):S-88-S-105Google Scholar
  111. Pietrzykowski M, Antonkiewicz J, Gruba P, Pająk M (2018) Content of Zn, Cd and Pb in purple moor-grass in soils heavily contaminated with heavy metals around a zinc and lead ore tailing landfill. Open Chem 16(1):1143–1152Google Scholar
  112. Pilon-Smits EAH (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39Google Scholar
  113. Pilon-Smits EAH (2017) Mechanisms of plant selenium hyperaccumulation. In: Pilon-Smits EAH, Winkel LHE, Lin Z-Q (eds) Selenium in plants: molecular, physiological, ecological and evolutionary aspects. Springer International Publishing, Cham, pp 53–66Google Scholar
  114. Prasad MNV (2003) Phytoremediation of metal-polluted ecosystems: hype for commercialization. Russ J Plant Physiol 50(5):686–701.  https://doi.org/10.1023/a:1025604627496 Google Scholar
  115. Prasad MNV, de Oliveira Freitas HM (2003) Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6(3):285–321Google Scholar
  116. Prasad MNV, Strzalka K (2002) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer Academic Publishers, DordrechtGoogle Scholar
  117. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181.  https://doi.org/10.1016/j.plantsci.2010.08.016 Google Scholar
  118. Reeves RD (2005) 18-30 August 2002). Hyperaccumulation of trace elements by plants. In: Phytoremediation of metal-contaminated soils. Paper presented at the Proceedings of the NATO Advanced Study Institute. NATO Science Series: IV: Earth and Environmental Sciences 68, Třešť Castle, Czech Republic,Google Scholar
  119. Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229Google Scholar
  120. Reeves RD, Brooks RR (1983) European species of Thlaspi L. (Cruciferae) as indicators of nickel and zinc. J Geochem Explor 18(3):275–283.  https://doi.org/10.1016/0375-6742(83)90073-0 Google Scholar
  121. Reynolds RJB, Cappa JJ, Pilon-Smits EAH (2017) Evolutionary aspects of plant selenium accumulation. In: Pilon-Smits EAH, Winkel LHE, Lin Z-Q (eds) Selenium in plants: molecular, physiological, ecological and evolutionary aspects. Springer International Publishing, Cham, pp 189–205Google Scholar
  122. Robinson BH, Lombi E, Zhao FJ, McGrath SP (2003) Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. New Phytol 158(2):279–285.  https://doi.org/10.1046/j.1469-8137.2003.00743.x Google Scholar
  123. Rosenkranz T, Kisser J, Wenzel WW, Puschenreiter M (2017) Waste or substrate for metal hyperaccumulating plants—the potential of phytomining on waste incineration bottom ash. Sci Total Environ 575:910–918.  https://doi.org/10.1016/j.scitotenv.2016.09.144 Google Scholar
  124. Salam MMA, Kaipiainen E, Mohsin M, Villa A, Kuittinen S, Pulkkinen P, Pelkonen P, Mehtätalo L, Pappinen A (2016) Effects of contaminated soil on the growth performance of young Salix (Salix schwerinii E. L. Wolf) and the potential for phytoremediation of heavy metals. J Environ Manag 183:467–477.  https://doi.org/10.1016/j.jenvman.2016.08.082 Google Scholar
  125. Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotech 13(5):468–474Google Scholar
  126. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Biol 49(1):643–668Google Scholar
  127. Saltzman A, Birol E, Bouis HE, Boy E, De Moura FF, Islam Y, Pfeiffer WH (2013) Biofortification: progress toward a more nourishing future. Glob Food Sec 2(1):9–17.  https://doi.org/10.1016/j.gfs.2012.12.003 Google Scholar
  128. Sauerbeck DR (1991) Plant element and soil properties governing uptake and availability of heavy metals derived from sewage sludge. Water Air Soil Pollut 57(1):227–237.  https://doi.org/10.1007/bf00282886 Google Scholar
  129. Schiavon M, Pilon-Smits EAH (2017) Selenium biofortification and phytoremediation phytotechnologies: A review. J Environ Qual 46(1):10–19Google Scholar
  130. Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29(7):318A–323A.  https://doi.org/10.1021/es00007a747 Google Scholar
  131. Shao JF, Yamaji N, Shen RF, Ma JF (2017) The key to Mn homeostasis in plants: regulation of Mn transporters. Trends Plant Sci 22(3):215–224Google Scholar
  132. Shen ZG, Zhao FJ, McGrath SP (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ 20(7):898–906.  https://doi.org/10.1046/j.1365-3040.1997.d01-134.x Google Scholar
  133. Sheng X-F, Xia J-J (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64(6):1036–1042.  https://doi.org/10.1016/j.chemosphere.2006.01.051 Google Scholar
  134. Singh N, Ma LQ (2006) Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Pteris ensiformis L. Environ Pollut 141(2):238–246.  https://doi.org/10.1016/j.envpol.2005.08.050 Google Scholar
  135. Sivarajasekar N, Mohanraj N, Sivamani S, Moorthy IG, Kothandan R, Muthusaravanan S (2018) Comparative modeling of fluoride biosorption onto waste Gossypium hirsutum seed microwave-bichar using response surface methodology and artificial neural networks. IEEE Xplore:1631–1635Google Scholar
  136. Souza LA, Piotto FA, Nogueirol RC, Azevedo RA (2013) Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents. Sci Agric 70(4):290–295Google Scholar
  137. Sukumaran D (2013) Phytoremediation of heavy metals from industrial effluent using constructed wetland technology. Appl Ecol Environ Sci 1(5):92–97Google Scholar
  138. Tang L, Hamid Y, Sahito ZA, Gurajala HK, He Z, Yang X (2019) Effects of CO2 application coupled with endophyte inoculation on rhizosphere characteristics and cadmium uptake by Sedum alfredii Hance in response to cadmium stress. J Environ Manag 239:287–298Google Scholar
  139. Tauqeer HM, Ali S, Rizwan M, Ali Q, Saeed R, Iftikhar U, Ahmad R, Farid M, Abbasi GH (2016) Phytoremediation of heavy metals by Alternanthera bettzickiana: growth and physiological response. Ecotoxicol Environ Saf 126:138–146.  https://doi.org/10.1016/j.ecoenv.2015.12.031 Google Scholar
  140. Thakur S, Singh L, Ab Wahid Z, Siddiqui MF, Atnaw SM, Din MFM (2016) Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ Monit Assess 188(4):206Google Scholar
  141. Thewys T, Witters N, Meers E, Vangronsveld J (2010) Economic viability of phytoremediation of a cadmium contaminated agricultural area using energy maize. Part II: economics of anaerobic digestion of metal contaminated maize in Belgium. Int J Phytoremediation 12(7):663–679.  https://doi.org/10.1080/15226514.2010.493188 Google Scholar
  142. Tobias R, Berg M (2011) Sustainable use of arsenic-removing sand filters in Vietnam: psychological and social factors. Environ Sci Technol 45(8):3260–3267.  https://doi.org/10.1021/es102076x Google Scholar
  143. Tolrà R, Pongrac P, Poschenrieder C, Vogel-Mikuš K, Regvar M, Barceló J (2006) Distinctive effects of cadmium on glucosinolate profiles in Cd hyperaccumulator Thlaspi praecox and non-hyperaccumulator Thlaspi arvense. Plant Soil 288(1):333–341.  https://doi.org/10.1007/s11104-006-9124-1 Google Scholar
  144. Turkyilmaz A, Sevik H, Cetin M, Saleh EAA (2018) Changes in heavy metal accumulation depending on traffic density in some landscape plants. Pol J Environ Stud 27(5):2277–2284Google Scholar
  145. UNICEF (2007) Project report: national micronutrient survey 2007. Ministry of Health & Family, MaldivesGoogle Scholar
  146. van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013a) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362(1):319–334.  https://doi.org/10.1007/s11104-012-1287-3 Google Scholar
  147. van der Ent A, Baker AJM, van Balgooy MMJ, Tjoa A (2013b) Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): mining, nickel hyperaccumulators and opportunities for phytomining. J Geochem Explor 128:72–79.  https://doi.org/10.1016/j.gexplo.2013.01.009 Google Scholar
  148. Vögeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves: implication of a transport function for cadmium-binding peptides. Plant Physiol 92(4):1086–1093Google Scholar
  149. Wan X, Lei M, Chen T, Ma J (2017a) Micro-distribution of arsenic species in tissues of hyperaccumulator Pteris vittata L. Chemosphere 166:389–399.  https://doi.org/10.1016/j.chemosphere.2016.09.115 Google Scholar
  150. Wan X, Lei M, Chen T, Yang J (2017b) Intercropped Pteris vittata L. and Morus alba L. presents a safe utilization mode for arsenic-contaminated soil. Sci Total Environ 579:1467–1475.  https://doi.org/10.1016/j.scitotenv.2016.11.148 Google Scholar
  151. Wan X, Lei M, Yang J (2017c) Two potential multi-metal hyperaccumulators found in four mining sites in Hunan Province, China. CATENA, 148. Part 1:67–73.  https://doi.org/10.1016/j.catena.2016.02.005 Google Scholar
  152. Wang J, Zhou C, Xiao X, Xie Y, Zhu L, Ma Z (2017) Enhanced iron and selenium uptake in plants by volatile emissions of Bacillus amyloliquefaciens (BF06). Appl Sci 7(1):85Google Scholar
  153. White PJ (2017) The genetics of selenium accumulation by plants. In: Pilon-Smits EAH, Winkel LHE, Lin Z-Q (eds) Selenium in plants: molecular, physiological, ecological and evolutionary aspects. Springer International Publishing, Cham, pp 143–163Google Scholar
  154. Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35(15):3144–3150Google Scholar
  155. Wilson-Corral V, Anderson CWN, Rodriguez-Lopez M (2012) Gold phytomining. A review of the relevance of this technology to mineral extraction in the 21st century. J Environ Manag 111:249–257.  https://doi.org/10.1016/j.jenvman.2012.07.037 Google Scholar
  156. Wu M, Luo Q, Liu S, Zhao Y, Long Y, Pan Y (2018) Screening ornamental plants to identify potential Cd hyperaccumulators for bioremediation. Ecotoxicol Environ Saf 162:35–41.  https://doi.org/10.1016/j.ecoenv.2018.06.049 Google Scholar
  157. Xie QE, Yan XL, Liao XY, Li X (2009) The arsenic hyperaccumulator fern Pteris vittata L. Environ Sci Technol 43(22):8488–8495.  https://doi.org/10.1021/es9014647 Google Scholar
  158. Yadav KK, Gupta N, Kumar A, Reece LM, Singh N, Rezania S, Khan SA (2018) Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecol Eng 120:274–298Google Scholar
  159. Yang X, Long X, Ye H, He Z, Calvert D, Stoffella P (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259(1–2):181–189Google Scholar
  160. Yang X, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18(4):339–353Google Scholar
  161. Yasin M, El-Mehdawi AF, Anwar A, Pilon-Smits EAH, Faisal M (2015) Microbial-enhanced selenium and iron biofortification of wheat (Triticum aestivum L.) - applications in phytoremediation and biofortification. Int J Phytoremediation 17(4):341–347.  https://doi.org/10.1080/15226514.2014.922920 Google Scholar
  162. Zhang X, Laubie B, Houzelot V, Plasari E, Echevarria G, Simonnot M-O (2016) Increasing purity of ammonium nickel sulfate hexahydrate and production sustainability in a nickel phytomining process. Chem Eng Res Des 106:26–32.  https://doi.org/10.1016/j.cherd.2015.12.009 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Centre, Central AdministrationThe Maldives National University (MNU)MaleMaldives
  2. 2.Food Science and Technology Unit, Department of Chemical EngineeringUniversity of the West Indies, – St. Augustine CampusSt. AugustineTrinidad & Tobago
  3. 3.School of Science and HealthWestern Sydney UniversitySydneyAustralia
  4. 4.Faculty of Bio-Engineering and TechnologyUniversiti Malaysia Kelantan (UMK)Kelantan Darul NaimMalaysia
  5. 5.Faculty of Chemical & Natural Resources EngineeringUniversiti Malaysia PahangGambangMalaysia
  6. 6.Dipartimento di Scienze e Innovazione TecnologicaUniversity of Piemonte OrientaleAlessandriaItaly

Personalised recommendations