Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 26, pp 27444–27456 | Cite as

Chronic exposure to urban air pollution from Buenos Aires: the ocular mucosa as an early biomarker

  • Guillermo A. Maglione
  • Melisa L. KurtzEmail author
  • Nadia S. Orona
  • Francisco Astort
  • Iván Tavera Busso
  • Patricia M. Mandalunis
  • Alejandro Berra
  • Deborah R. Tasat
Research Article
  • 107 Downloads

Abstract

Air pollution represents a major health problem in megacities, bringing about 8 million deaths every year. The aim of the study was to evaluate in vivo the ocular and respiratory mucosa biological response after chronic exposure to urban air particles from Buenos Aires (UAP-BA). BALB/c mice were exposed to UAP-BA or filtered air for 1, 6, 9, and 12 months. After exposure, histology, histomorphometry, and IL-6 proinflammatory cytokine level were evaluated in the respiratory and ocular mucosa. Total cell number and differential cell count were determined in the brochoalveolar lavage fluid. In the lung, chronic exposure to UAP-BA induced reduction of the alveolar space, polymorhonuclear cell recruitment, and goblet cell hyperplasia. In the ocular surface, UAP-BA induced an initial mucin positive cells rise followed by a decline through time, while IL-6 level increased at the latest point-time assayed. Our results showed that the respiratory and the ocular mucosas respond differently to UAP-BA. Being that lung and ocular mucosa diseases may be triggered and/or exacerbated by chronic exposure to urban air PM, the inhabitants of Buenos Aires whom are chronically exposed to environmental urban air pollution may be considered a subpopulation at risk. Based on our results, we propose the ocular mucosa as a reliable and more accessible surrogate for pulmonary mucosa environmental toxicity that might also serve as an earlier biomarker for air pollution adverse impact on health.

Keywords

Urban air pollution Ocular surface Lung Inflammation Buenos Aires 

Notes

Acknowledgments

The authors would thank Ms. Mariela Lacave for her technical assistance.

Funding information

This work was partially supported by the National Agency for the Promotion of Science and Technology, Argentina; contract grant number: PICT 2010-1661.

Compliance with ethical standards

Conflict of interest

None of the authors had any financial or personal conflict of interest.

References

  1. Alves M, Novaes P, Morraye Mde A, Reinach PS, Rocha EM (2014) Is dry eye an environmental disease? Arq Bras Oftalmol 77:193–200CrossRefGoogle Scholar
  2. ATSDR (2016) Polycyclic aromatic hydrocarbons (PAHs). What health effects are associated with PAH exposure? https://www.atsdr.cdc.gov/csem/csem.asp?csem¼13&po¼11. Accessed 24 April 2019
  3. Avila-Costa MR et al (2005) Ependymal epithelium disruption after vanadium pentoxide inhalation. A mice experimental model. Neurosci Lett 381:21–25.  https://doi.org/10.1016/j.neulet.2005.01.072 CrossRefGoogle Scholar
  4. Bogo H, Negri M, San Román E (1999) Continuous measurement of gaseous pollutants in Buenos Aires city. Atmos Environ 33:2587–2598.  https://doi.org/10.1016/S1352-2310(98)00270-2 CrossRefGoogle Scholar
  5. Bogo H, Otero M, Castro P, Ozafean M, Kreiner A, Calvo E, Negri M (2003) Study of atmospheric particulate matter in Buenos Aires city. Atmos Environ 37:1135–1147.  https://doi.org/10.1016/S1352-2310(02)00977-9 CrossRefGoogle Scholar
  6. Bourcier T et al (2003) Effects of air pollution and climatic conditions on the frequency of ophthalmological emergency examinations. Br J Ophthalmol 87:809–811.  https://doi.org/10.1136/bjo.87.7.809 CrossRefGoogle Scholar
  7. Camargo Pires-Neto R, Lichtenfels AJ, Soares SR, Macchione M, Saldiva PHN, Dolhnikoff M (2006) Effects of Sao Paulo air pollution on the upper airways of mice. Environ Res 101:356–361.  https://doi.org/10.1016/j.envres.2005.12.018 CrossRefGoogle Scholar
  8. Chang CJ, Yang HH, Chang CA, Tsai HY (2012) Relationship between air pollution and outpatient visits for nonspecific conjunctivitis. Invest Ophthalmol Vis Sci 53:429–433.  https://doi.org/10.1167/iovs.11-8253 CrossRefGoogle Scholar
  9. Dartt DA, Masli S (2014) Conjunctival epithelial and goblet cell function in chronic inflammation and ocular allergic inflammation. Curr Opin Allergy Clin Immunol 14:464–470.  https://doi.org/10.1097/ACI.0000000000000098 CrossRefGoogle Scholar
  10. Dua HS, Gomes JA, Donoso LA, Laibson PR (1995) The ocular surface as part of the mucosal immune system: conjunctival mucosa-specific lymphocytes in ocular surface pathology. Eye (Lond) 9:261–267.  https://doi.org/10.1038/eye.1995.51 CrossRefGoogle Scholar
  11. Esen F, Tasdemir Y, Vardar N (2008) Atmospheric concentrations of PAHs, their possible sources and gas-to-particle partitioning at a residential site of Bursa, Turkey. Atmos Res 88:243–255.  https://doi.org/10.1016/j.atmosres.2007.11.022 CrossRefGoogle Scholar
  12. Fanucchi MV, Plopper CG, Evans MJ, Hyde DM, Van Winkle LS, Gershwin LJ, Schelegle ES (2006) Cyclic exposure to ozone alters distal airway development in infant rhesus monkeys. Am J Physiol Lung Cell Mol Physiol 291:L644–L650.  https://doi.org/10.1152/ajplung.00027.2006 CrossRefGoogle Scholar
  13. Ferraro SA, Yakisich JS, Gallo FT, Tasat DR (2011) Simvastatin pretreatment prevents ambient particle-induced lung injury in mice. Inhal Toxicol 23:889–896.  https://doi.org/10.3109/08958378.2011.623195 CrossRefGoogle Scholar
  14. Ferraro SA, Curutchet G, Tasat DR (2012) Bioaccessible heavy metals-sediment particles from Reconquista River induce lung inflammation in mice. Environ Toxicol Chem 31:2059–2068.  https://doi.org/10.1002/etc.1911 CrossRefGoogle Scholar
  15. Ferraro S, Orona N, Villalon L, Saldiva PH, Tasat DR, Berra A (2015) Air particulate matter exacerbates lung response on Sjogren’s syndrome animals. Exp Toxicol Pathol 67:125–131.  https://doi.org/10.1016/j.etp.2014.10.007 CrossRefGoogle Scholar
  16. Fortoul TI et al (1999) Ultrastructural findings in the murine nonciliated bronchiolar cells (NCBC) after subacute inhalation of lead acetate. Acta Vet Brno 68:51–55.  https://doi.org/10.2754/avb199968010051 CrossRefGoogle Scholar
  17. Fujishima H, Satake Y, Okada N, Kawashima S, Matsumoto K, Saito H (2013) Effects of diesel exhaust particles on primary cultured healthy human conjunctival epithelium. Ann Allergy Asthma Immunol 110:39–43.  https://doi.org/10.1016/j.anai.2012.10.017 CrossRefGoogle Scholar
  18. Gipson IK (2016) Goblet cells of the conjunctiva: a review of recent findings. Prog Retin Eye Res 54:49–63.  https://doi.org/10.1016/j.preteyeres.2016.04.005 CrossRefGoogle Scholar
  19. Hooper LG et al (2018) Ambient air pollution and chronic bronchitis in a cohort of U.S. women. Environ Health Perspect 126:027005.  https://doi.org/10.1289/EHP2199 CrossRefGoogle Scholar
  20. IARC (2010) IARC monographs on the evaluation of carcinogenic risks to humans. Volume 92, Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposuresGoogle Scholar
  21. IDEW-Report (2007) The epidemiology of dry eye disease: report of the Epidemiology Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf 5:93–107CrossRefGoogle Scholar
  22. Inatomi T, Spurr-Michaud S, Tisdale AS, Zhan Q, Feldman ST, Gipson IK (1996) Expression of secretory mucin genes by human conjunctival epithelia. Invest Ophthalmol Vis Sci 37:1684–1692Google Scholar
  23. Kumar P et al (2014) Ultrafine particles in cities. Environ Int 66:1–10.  https://doi.org/10.1016/j.envint.2014.01.013 CrossRefGoogle Scholar
  24. Kunzli N, Medina S, Kaiser R, Quenel P, Horak F Jr, Studnicka M (2001) Assessment of deaths attributable to air pollution: should we use risk estimates based on time series or on cohort studies? Am J Epidemiol 153:1050–1055CrossRefGoogle Scholar
  25. Kurtz M et al (2018) Oxidative stress response to air particle pollution in a rat nutritional growth retardation model. J Toxicol Environ Health A 81:1028–1040.  https://doi.org/10.1080/15287394.2018.1519747 CrossRefGoogle Scholar
  26. Lasagni Vitar RM et al (2018) Diesel exhaust particles (DEP) induce an early redox imbalance followed by an IL-6 mediated inflammatory response on human conjunctival epithelial cells. Exp Eye Res 171:37–47.  https://doi.org/10.1016/j.exer.2018.03.005 CrossRefGoogle Scholar
  27. Li J et al (2017) A mouse dry eye model induced by topical administration of the air pollutant particulate matter 10. Biomed Pharmacother 96:524–534.  https://doi.org/10.1016/j.biopha.2017.10.032 CrossRefGoogle Scholar
  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar
  29. Mannucci PM, Franchini M (2017) Health effects of ambient air pollution in developing countries. Int J Environ Res Public Health 14:1048.  https://doi.org/10.3390/ijerph14091048 CrossRefGoogle Scholar
  30. Martin S, Dawidowski L, Mandalunis P, Cereceda-Balic F, Tasat DR (2007) Characterization and biological effect of Buenos Aires urban air particles on mice lungs. Environ Res 105:340–349.  https://doi.org/10.1016/j.envres.2007.04.009 CrossRefGoogle Scholar
  31. Martin S, Fernandez-Alanis E, Delfosse V, Evelson P, Yakisich JS, Saldiva PH, Tasat DR (2010) Low doses of urban air particles from Buenos Aires promote oxidative stress and apoptosis in mice lungs. Inhal Toxicol 22:1064–1071.  https://doi.org/10.3109/08958378.2010.523030 CrossRefGoogle Scholar
  32. Medina-Ramon M, Zanobetti A, Schwartz J (2006) The effect of ozone and PM10 on hospital admissions for pneumonia and chronic obstructive pulmonary disease: a national multicity study. Am J Epidemiol 163:579–588.  https://doi.org/10.1093/aje/kwj078 CrossRefGoogle Scholar
  33. Mimura T et al (2014) Airborne particulate matter (PM2.5) and the prevalence of allergic conjunctivitis in Japan. Sci Total Environ 487:493–499.  https://doi.org/10.1016/j.scitotenv.2014.04.057 CrossRefGoogle Scholar
  34. Moss SE, Klein R, Klein BE (2000) Prevalence of and risk factors for dry eye syndrome. Arch Ophthalmol 118:1264–1268CrossRefGoogle Scholar
  35. Munoz X, Barreiro E, Bustamante V, Lopez-Campos JL, Gonzalez-Barcala FJ, Cruz MJ (2019) Diesel exhausts particles: their role in increasing the incidence of asthma. Reviewing the evidence of a causal link. Sci Total Environ 652:1129–1138.  https://doi.org/10.1016/j.scitotenv.2018.10.188 CrossRefGoogle Scholar
  36. Nisbet IC, LaGoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16:290–300CrossRefGoogle Scholar
  37. Novaes P, Saldiva PH, Kara-Jose N, Macchione M, Matsuda M, Racca L, Berra A (2007) Ambient levels of air pollution induce goblet-cell hyperplasia in human conjunctival epithelium. Environ Health Perspect 115:1753–1756.  https://doi.org/10.1289/ehp.10363 CrossRefGoogle Scholar
  38. Orellano P, Quaranta N, Reynoso J, Balbi B, Vasquez J (2017) Effect of outdoor air pollution on asthma exacerbations in children and adults: systematic review and multilevel meta-analysis. PLoS One 12:e0174050.  https://doi.org/10.1371/journal.pone.0174050 CrossRefGoogle Scholar
  39. Orona NS, Astort F, Maglione GA, Saldiva PH, Yakisich JS, Tasat DR (2014) Direct and indirect air particle cytotoxicity in human alveolar epithelial cells. Toxicol in Vitro 28:796–802.  https://doi.org/10.1016/j.tiv.2014.02.011 CrossRefGoogle Scholar
  40. Orona NS et al (2016) Acute exposure to Buenos Aires air particles (UAP-BA) induces local and systemic inflammatory response in middle-aged mice: a time course study. Environ Pollut 208:261–270.  https://doi.org/10.1016/j.envpol.2015.07.020 CrossRefGoogle Scholar
  41. Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921.  https://doi.org/10.1016/j.atmosenv.2007.12.010 CrossRefGoogle Scholar
  42. Saldiva PH et al (1992) Respiratory alterations due to urban air pollution: an experimental study in rats. Environ Res 57:19–33CrossRefGoogle Scholar
  43. Sharma AK, Baliyan P, Kumar P (2017) Air pollution and public health: the challenges for Delhi, India. Rev Environ Health 33:77–86.  https://doi.org/10.1515/reveh-2017-0032 CrossRefGoogle Scholar
  44. Smichowski P, Gomez DR, Dawidowski LE, Gine MF, Bellato AC, Reich SL (2004) Monitoring trace metals in urban aerosols from Buenos Aires city. Determination by plasma-based techniques. J Environ Monit 6:286–294.  https://doi.org/10.1039/b312446k CrossRefGoogle Scholar
  45. Szyszkowicz M, Kousha T, Castner J (2016) Air pollution and emergency department visits for conjunctivitis: a case-crossover study. Int J Occup Med Environ Health 29:381–393.  https://doi.org/10.13075/ijomeh.1896.00442 CrossRefGoogle Scholar
  46. Tasat DR, de Rey BM (1987) Cytotoxic effect of uranium dioxide on rat alveolar macrophages. Environ Res 44:71–81CrossRefGoogle Scholar
  47. Tau J, Novaes P, Matsuda M, Tasat DR, Saldiva PH, Berra A (2013) Diesel exhaust particles selectively induce both proinflammatory cytokines and mucin production in cornea and conjunctiva human cell lines. Invest Ophthalmol Vis Sci 54:4759–4765.  https://doi.org/10.1167/iovs.12-10541 CrossRefGoogle Scholar
  48. Tavera Busso I, Vera A, Mateos AC, Amarillo AC, Carreras H (2017) Histological changes in lung tissues related with sub-chronic exposure to ambient urban levels of PM 2.5 in Córdoba, Argentina. Atmos Environ 167:616–624.  https://doi.org/10.1016/j.atmosenv.2017.08.061 CrossRefGoogle Scholar
  49. Torricelli AA, Novaes P, Matsuda M, Alves MR, Monteiro ML (2011) Ocular surface adverse effects of ambient levels of air pollution. Arq Bras Oftalmol 74:377–381CrossRefGoogle Scholar
  50. Torricelli AA, Matsuda M, Novaes P, Braga AL, Saldiva PH, Alves MR, Monteiro ML (2014) Effects of ambient levels of traffic-derived air pollution on the ocular surface: analysis of symptoms, conjunctival goblet cell count and mucin 5AC gene expression. Environ Res 131:59–63.  https://doi.org/10.1016/j.envres.2014.02.014 CrossRefGoogle Scholar
  51. US-EPA (2017) Benzo[a]pyrene(BaP) https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=136. 2019. Accessed 24 April 2019
  52. WHO (2018) Air pollution, https://www.who.int/airpollution/en/. Accessed 24 April 2019
  53. Wolkoff P (2010) Ocular discomfort by environmental and personal risk factors altering the precorneal tear film. Toxicol Lett 199:203–212.  https://doi.org/10.1016/j.toxlet.2010.09.001 CrossRefGoogle Scholar
  54. Zhang YL, Cao F (2015) Fine particulate matter (PM 2.5) in China at a city level. Sci Rep 5:14884.  https://doi.org/10.1038/srep14884 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Guillermo A. Maglione
    • 1
    • 2
  • Melisa L. Kurtz
    • 1
    • 3
    Email author
  • Nadia S. Orona
    • 1
    • 3
  • Francisco Astort
    • 1
    • 3
  • Iván Tavera Busso
    • 3
    • 4
  • Patricia M. Mandalunis
    • 2
  • Alejandro Berra
    • 5
  • Deborah R. Tasat
    • 1
    • 2
  1. 1.Center for the Studies in Health and Environment, School of Science and TechnologyNational University of San MartinSan MartínArgentina
  2. 2.Department of Histology and Embryology, School of DentistryUniversity of Buenos AiresAutonomous City of Buenos AiresArgentina
  3. 3.National Research Council (CONICET)Autonomous City of Buenos AiresArgentina
  4. 4.Institute for Multidisciplinary Plant BiologyNational University of CórdobaCórdoba CityArgentina
  5. 5.Department of Pathology, School of MedicineUniversity of Buenos AiresAutonomous City of Buenos AiresArgentina

Personalised recommendations