Advertisement

Phytochemical analysis and effect of the essential oil of Psidium L. species on the initial development and mitotic activity of plants

  • Loren Cristina Vasconcelos
  • Esdras de Souza Santos
  • Carolina de Oliveira Bernardes
  • Marcia Flores da Silva Ferreira
  • Adésio Ferreira
  • Amélia Carlos Tuler
  • José Augusto Macedo Carvalho
  • Patrícia Fontes Pinheiro
  • Milene Miranda Praça-FontesEmail author
Research Article
  • 46 Downloads

Abstract

The use of allelopathic compounds is an alternative for weeds control, since they present low toxicity when compared with the synthetic herbicides, that may cause several damages, as the contamination of the environment. Our objective was to determine the chemical composition and allelopathic properties of the essential oils of Psidium cattleianum, P. myrtoides, P. friedrichsthalianum, and P. gaudichaudianum on the germination and root growth of Lactuca sativa and Sorghum bicolor, and to evaluate their action on the cell cycle of root meristematic cells of L. sativa. The main compound found in all the studied species was (E)-caryophyllene (P. cattleianum—23.4 %; P. myrtoides—19.3%; P. friedrichsthalianum—24.6% and P. gaudichaudianum—17.0%). The different essential oils were tested at different concentrations on L. sativa and S. bicolor, reducing germination, germination speed index, and root and shoot growth of lettuce and sorghum seedlings. The cytotoxicity and aneugenic potential of these oils were evidenced by the reduction of the mitotic index and increase of the frequency of chromosomal alterations in L. sativa. The essential oils of the species of Psidium studied have potential to be used in weeds control.

Keyword

Allelopathy Cytotoxicity Myrtaceae Phytotoxicity Psidium Natural herbicides 

Notes

Funding information

The authors thank the National Council for Scientific and Technological Development (CNPq, Brasília – DF, Brazil), Foundation for Research Support in Espírito Santo (FAPES, Vitória – ES, Brazil), and Coordination of Improvement of Higher Level Personnel (CAPES, Brasília – DF, Brazil) for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abrahim D, Francischini AC, Pergo EM, Kelmer-Bracht AM, Ishii-Iwamoto EL (2003) Effects of α-pinene on the mitochondrial respiration of maize seedlings. Plant Physiol Biochem 41:985–991.  https://doi.org/10.1016/j.plaphy.2003.07.003 CrossRefGoogle Scholar
  2. Adams RP (2007) Identification of essential oils components by gas chromatography/mass spectroscopy, 4ª edn. Allured Publishing Corporation, Carol StreamGoogle Scholar
  3. Andrade LF, Davide LC, Gedraite LS (2010) The effect of cyanide compounds, fluorides and inorganic oxides present in spent pot liner on germination and root tip cells of Lactuca sativa. Ecotoxicol Environ Saf 73:626–631.  https://doi.org/10.1016/j.ecoenv.2009.12.012 CrossRefGoogle Scholar
  4. Andrade-Vieira LF, Botelho CM, Palmiere MJ, Laviola BG, Praça-Fontes MM (2014) Effects of Jatropha curcas oil in Lactuca sativa root tip bioassays. An Acad Bras Cienc 86:373–382.  https://doi.org/10.1590/0001-3765201420130041 CrossRefGoogle Scholar
  5. Aragão FB, Palmieri MJ, Ferreira A, Costa AV, Queiroz VT, Pinheiro PF, Andrade-Vieira LF (2015) Phytotoxic and cytotoxic effects of Eucalyptus essential oil on lettuce (Lactuca sativa L.). Allelopathy J 35:259–272Google Scholar
  6. Araniti F, Graña E, Reigosa MJ, SaÂnchez-Moreiras AMR (2013) Individual and joint activity of terpenoids, isolated from Calaminthanepeta extract, on Arabidopsis thaliana. Nat Prod Res 27:2297–2303.  https://doi.org/10.1080/14786419.2013.827193 CrossRefGoogle Scholar
  7. Araniti F, Graña E, Krasuska U, Bogatek R, Reigosa MJ, Abenavoli MR, Sanchez-Moreiras AM (2016) Loss of gravitropism in farnesene-treated arabidopsis is due to microtubule malformations related to hormonal and ROS unbalance. Plos One 11:23–35.  https://doi.org/10.1371/journal.pone.0160202 CrossRefGoogle Scholar
  8. Araniti F, SaÂnchez-Moreiras AM, Graña E, Reigosa MJ, Abenavoli MR (2017) Terpenoid trans-caryophyllene inhibits weed germination and induces plant water status alteration and oxidative damage in adult Arabidopsis. Plant Biol 19:79–89.  https://doi.org/10.1111/plb.12471 CrossRefGoogle Scholar
  9. Arminante F, De Falco E, De Feo V, De Martino L, Mancini E, Quaranta E (2006) Allelopathic activity of essential oils from mediterranean labiatae. Acta Hortic 723:347–356.  https://doi.org/10.17660/ActaHortic.2006.723.47 CrossRefGoogle Scholar
  10. Barbosa LCA, Demune AJ, Clemente AD (2007) Seasonal variation in the composition of volatile oils from Schinus Terebinthifolius Raddi. Quim Nova 30:1959–1965.  https://doi.org/10.1590/S0100-40422007000800030 (in Portuguese)CrossRefGoogle Scholar
  11. Barroso GM, Peixoto AL, Costa CG, Ichaso CLF, Guimarães EF, Lima HC (1984) Sistemática de angiospermas do Brasil. UFV, BrazilGoogle Scholar
  12. Chukwujekwu JC, Van Staden J (2014) Cytotoxic and genotoxic effects of water extract of Distephanus angulifolius on Allium cepa Linn. S Afr J Bot 92:147–150.  https://doi.org/10.1016/j.sajb.2014.03.001 CrossRefGoogle Scholar
  13. Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, New YorkGoogle Scholar
  14. Cruz CD (2008) Genes program – genetic diversity, 1rd edn. Editora UFV, Viçosa (in portuguese)Google Scholar
  15. Dias CN, Alves LPL, Rodrigues KAF et al (2015) Chemical composition and larvicidal activity of essential oils extracted from brazilian legal amazon plants against Aedes aegypti L. (Diptera: Culicidae). J Evid Based Complementary Altern Med.  https://doi.org/10.1155/2015/490765
  16. Duke SO, Powles SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Manage Sci 64:319–325.  https://doi.org/10.1002/ps.1518 CrossRefGoogle Scholar
  17. Fernandes TCC, Mazzeo DEC, Marin-Morales MA (2007) Mechanism of micronuclei formation in polyploidizated cells of Allium cepa exposed to trifluralin herbicide. Pestic Biochem Physiol 88:252–259.  https://doi.org/10.1016/j.pestbp.2006.12.003 CrossRefGoogle Scholar
  18. Galdino PM, Nascimento MVM, Florentino IF, Lino RC, Fajemiroye JO, Chaibub BA, de Paula JR, de Lima TCM, Costa EA (2012) The anxiolytic-like effect of an essential oil derived from Spiranthera odoratissima A. St. Hil. leaves and its major component, β-caryophyllene, in male mice. Prog Neuropsycho Pharmacol Biol Psychiatry 38:276–284.  https://doi.org/10.1016/j.pnpbp.2012.04.012 CrossRefGoogle Scholar
  19. Gelmini GA, Filho RV et al (2001) Resistance of Euphorbia heterophylla L. biotypes to ALS enzyme inhibitor herbicides used in soybean crop. Bragantia 60:93–99.  https://doi.org/10.1590/S0006-87052001000200005 (in portuguese)CrossRefGoogle Scholar
  20. Ghelardini C, Galeotti N, di Cesare Mannelli L, Mazzanti G, Bartolini A (2001) Local anaesthetic activity of beta-caryophyllene. Farmaco 56:387–389.  https://doi.org/10.1016/S0014-827X(01)01092-8 CrossRefGoogle Scholar
  21. Glab L, Sowinski J, Bough R, Dayan FE (2017) Allelopathic potential of sorghum (Sorghum bicolor (L.) Moench) in weed control: a comprehensive review. Adv Agro 145:43–95.  https://doi.org/10.1016/bs.agron.2017.05.001 CrossRefGoogle Scholar
  22. Goren AC, Piozzi F, Akcicek E, Kilic T, Carikci S, Mozioglu E, Setzer WN (2011) Essential oil composition of twenty-two Stachys species (mountain tea) and their biological activities. Phytochem Lett 4:448–453.  https://doi.org/10.1016/j.phytol.2011.04.013 CrossRefGoogle Scholar
  23. Grant WF (1994) The present status of higher plant bioassays for the detection of environmental mutagens. Mut Res 310:175–185.  https://doi.org/10.1016/0027-5107(94)90112-0 CrossRefGoogle Scholar
  24. Grossmann K, Hutzler J, Tresch S, Christiansen N, Looser R, Ehrhardt T (2012) On the mode of action of the herbicides cinmethylin and 5-benzyloxymethyl-1,2-isoxazolines: putative inhibitors of plant tyrosine aminotransferase. Pest Manag Sci 68:482–492.  https://doi.org/10.1002/ps.2319 CrossRefGoogle Scholar
  25. Gutiérrez RMP, Mitchell S, Solis RV (2008) Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. Journal of Ethnopharmacology 117:1–27.  https://doi.org/10.1016/j.jep.2008.01.025 CrossRefGoogle Scholar
  26. Jatoba LJ, Varela RM, Molinillo JMG, Din ZU, Gualtieri SCJ, Rodrigues-Filho E, Macías FA (2016) Allelopathy of bracken fern (Pteridium arachnoideum): new evidence from green fronds, litter, and soil. Plos One 11:1–16.  https://doi.org/10.1371/journal.pone.0161670 Google Scholar
  27. Kawawa RCA, Muyekho FN, Obiri JF, Agevi H, Obiet L (2016) The allelopathic impact of Psidium guajava L., leaf extracts on the germination and growth of Cassia occidentalis L., seeds. IOSR J Pharm Vet Sci 9:101–105Google Scholar
  28. Klancnik K, Drobne D, Valant J, Koce JD (2011) Use of a modified Allium test with nanoTiO2. Ecotoxicol Environ Saf 74:85–92.  https://doi.org/10.1016/j.ecoenv.2010.09.001 CrossRefGoogle Scholar
  29. Komai K, Sugiwaka Y, Sato S (1981) Plant-growth retardant of extracts obtained from water nutgrass (Cyperus serotinus Rottb.). Chem Abs 14:57–65Google Scholar
  30. Kruse M, Strandberg M, Strandberg B (2000) Ecological effects of allelopathic plants – a review. National Environmental Research Institute, Silkeborg, Denmark. 66 pp. – NERI Technical Report No. 315Google Scholar
  31. Lara-Nunez A, Ventura-Gallegos JL, Anaya AL, Cruz-Ortega R (2015) Phytotoxicity of Sicyos deppei during tomato germination and its effects on the role of ABA and cell wall enzymes. Bot Sci 93:771–781.  https://doi.org/10.17129/botsci.186 CrossRefGoogle Scholar
  32. Leme DM, Marin-Morales MA (2009) Allium cepa test in environmental monitoring: a review on its application. Mut Res 682:71–81.  https://doi.org/10.1016/j.mrrev.2009.06.002 CrossRefGoogle Scholar
  33. Li J, Liu X, Dong F, Xu J, Li Y, Shan W, Zheng Y (2011) Potential allelopathic effects of volatile oils from Descurainia sophia (L.) Webb ex Prantl on wheat. Biochem Syst and Ecol 39:56–63.  https://doi.org/10.1016/j.bse.2010.12.022 CrossRefGoogle Scholar
  34. Lima RK, Cardoso MG, Santos CD, Moraes JC, Néri DKP, Nascimento EA (2009) Essential oil chemical composition from leaves of guava (Psidium guajava L.) and its effects on the fall armyworm Spodoptera frugiperda (J. E. Smith, 1797). (Lepidoptera: Noctuidae) behavior. Ciênc Agrotec 33:1777–1781.  https://doi.org/10.1590/S1413-70542009000700013 (in portuguese)CrossRefGoogle Scholar
  35. Macías FA, Molinillo JM, Varela RM, Galindo JC (2007) Allelopathy—a natural alternative for weed control. Pest Manag Sci 63:327–348.  https://doi.org/10.1002/ps.1342 CrossRefGoogle Scholar
  36. Mendes LA, Martins GF et al (2017) Larvicidal effect of essential oils from Brazilian cultivars of guava on Aedes aegypti L. industrial crops and products 108: 684-689.  https://doi.org/10.1016/j.indcrop.2017.07.034
  37. Metcalfe CR, Chalk L (1950) Anatomy of the dicotyledons: leaves, stem, and wood in relation to taxonomy with notes on economic uses. Claredon Press, OxfordGoogle Scholar
  38. Molish H (1937) Der Einfluss einer Pflanze auf die andere. Allelopathie, FischerGoogle Scholar
  39. Padovan A, Keszei A, Külheim C, Foley WJ (2014) The evolution of foliar terpene diversity in Myrtaceae. Phytochem Rev 13:695–716.  https://doi.org/10.1007/s11101-013-9331-3 CrossRefGoogle Scholar
  40. Pawlowski A, Kaltchuk-Santos E, Zini CA, Caramao EB, Soares GLG (2012) Essential oils of Schinus terebinthifolius and S. molle (Anacardiaceae): mitodepressive and aneugenic inducers in onion and lettuce root meristems. South Afric J Bot 80:96–103.  https://doi.org/10.1016/j.sajb.2012.03.003 CrossRefGoogle Scholar
  41. Pellissier F (2013) Improved germination bioassays for allelopathy research. Acta Physiol Plant 35:23–30.  https://doi.org/10.1007/s11738-012-1044-5 CrossRefGoogle Scholar
  42. Pichette A, Larouche PL, Lebrun M, Legault J (2006) Composition and antibacterial activity of Abies balsamea essential oil. Phytoth Res 20:371–373.  https://doi.org/10.1002/ptr.1863 CrossRefGoogle Scholar
  43. Pinheiro PF, Queiroz VTD et al (2013) Insecticidal activity of citronella grass essential oil on Frankliniella schultzei and Myzus persicae. Ciência e Agrotecnologia 37:138–144.  https://doi.org/10.1590/S1413-70542013000200004 (in portuguese)CrossRefGoogle Scholar
  44. Pinheiro PF, Costa AV, Alves TA, Galter IN, Pinheiro CA, Pereira AF, Oliveira CMR, Fontes MMP (2015) Phytotoxicity and cytotoxicity of essential oil from leaves of Plectranthus amboinicus, carvacrol, and thymol in plant bioassays. J Agric Food Chem 63:8981–8990.  https://doi.org/10.1021/acs.jafc.5b03049 CrossRefGoogle Scholar
  45. Prates HT, Paes JMV, Pires NM, Filho IAP, Magalhães PC (2000) Effect of aqueous extract of leucaena on germination and growth of corn. Pesq Agro Bras 35:909–914.  https://doi.org/10.1590/S0100-204X2000000500007 (in portuguese)CrossRefGoogle Scholar
  46. Rice EL (2012) Allelopathy. Academic Press. 368ppGoogle Scholar
  47. Rizvi SJH, Tahir M, Rizvi V, Kohli RK, Ansari A (1999) Allelopathic interactions in agroforestry systems. Crit Rev Plant Sci 18:773–796.  https://doi.org/10.1080/07352689991309487 CrossRefGoogle Scholar
  48. Rowshan V, Farhadi F, Najafian S (2014) The essential oil of Dodonaea viscosa leaves is allelopathic to rosemary (Rosmarinus officinalis L.). Ind Crop and Products 56:241–245.  https://doi.org/10.1016/j.indcrop.2014.03.011 CrossRefGoogle Scholar
  49. Sabulal B, Dan M, John JA, Kurup R, Pradeep NS, Valsamma RK, George V (2006) Caryophyllene-rich rhizome oil of Zingiber nimmonii from South India: chemical characterization and antimicrobial activity. Phytochemistry 67:2469–2473.  https://doi.org/10.1016/j.phytochem.2006.08.003 CrossRefGoogle Scholar
  50. Selestino Neta MC, Vittorazzi C, Guimarães AC, Martins JDL, Fronza M, Endringer DC, Scherer R (2016) Effects of β-caryophyllene and Murraya paniculata essential oil in the murine hepatoma cells and in the bacteria and fungi 24-h time-kill curve studies. Pharm Biol 1:190–197.  https://doi.org/10.1080/13880209.2016.1254251 Google Scholar
  51. Silva AMD, Novato-Silva E, Faria HP, Pinheiro TMM (2005) Pesticides and work: a dangerous combination for the Brazilian agricultural workers health. Ciên Saúde Coletiva 10:891–903.  https://doi.org/10.1590/S1413-81232005000400013 (in portuguese)CrossRefGoogle Scholar
  52. Silveira GL, Lima MGF, Reis GB, Palmieri MJ, Andrade-Vieria LF (2017) Toxic effects of environmental pollutants: comparative investigation using Allium cepa L. and Lactuca sativa L. Chemosphere 178:359–367.  https://doi.org/10.1016/j.chemosphere.2017.03.048 CrossRefGoogle Scholar
  53. Soliman FM, Fathy MM, Salama MM, Saber FR (2016) Comparative study of the volatile oil content and antimicrobial activity of Psidium guajava L. and Psidium cattleianum Sabine leaves. Bull Fac Pharm Cairo Univ.  https://doi.org/10.1016/j.bfopcu.2016.06.003
  54. Souza TS, Ferreira MSF et al (2017) Essential oil of Psidium guajava: influence of genotypes and environment. Sci Hortic 216:38–44.  https://doi.org/10.1016/j.scienta.2016.12.026 CrossRefGoogle Scholar
  55. Tucker AO, Maciarello MJ (1995) Volatile leaf oils of american Myrtaceae III Psidium cattleianum Sabine, P. friedrichsthalianum (Berg) Niedenzu, P. guajava L., P. guineense Sw., and P. sartorianum (Berg) Niedenzu. J. Essent Oil Res 7:187–190.  https://doi.org/10.1080/10412905.1995.9698497 CrossRefGoogle Scholar
  56. Usuah PE, Udom GN, Edem ID (2013) Allelothic effects of some weeds on the germination of selected seeds of crops grown in Akwaibom state Nigeria. Glob J Agric Res 1:23–33Google Scholar
  57. Wang G, Tian L, Aziz N, Broun P, Dai X, He J, King A, Zhao PX, Dixon RA (2008) Terpene biosynthesis in glandular trichomes of hop. Plant Physiol 148:1254–1266.  https://doi.org/10.1104/pp.108.125187 CrossRefGoogle Scholar
  58. WCSP (World Checklist of Selected Plant Families), 2011. World checklist of selected plant families. http://www.kew.org/wcsp. Accessed 17 March 2019
  59. Wilson PG, O’Brien MM, Gadek PA, Heslewood MM, Quinn CJ (2001) Myrtaceae revisited: A reassessment of infra familial groups. Am J Bot 88:2013–2025.  https://doi.org/10.2307/3558428 CrossRefGoogle Scholar
  60. Wilson PG, O’Brien MM, Heslewood MM, Quinn CJ (2005) Relationships within Myrtaceae sensu lato based on a mat K phylogeny. Plant Syst Evol 251:3–19.  https://doi.org/10.1007/s00606-004-0162-y CrossRefGoogle Scholar
  61. Yang QH, Ye WH et al (2005) Effects of allelochemicals on seed germination. Chin J Ecol 24:1459–1465Google Scholar
  62. Zhang SZ, Li YH, Kong CH, Xu XH (2015) Interference of allelopathic wheat with different weeds. Pest Manag Sci 72:172–178.  https://doi.org/10.1002/ps.3985 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Loren Cristina Vasconcelos
    • 1
  • Esdras de Souza Santos
    • 1
  • Carolina de Oliveira Bernardes
    • 1
  • Marcia Flores da Silva Ferreira
    • 2
  • Adésio Ferreira
    • 2
  • Amélia Carlos Tuler
    • 3
  • José Augusto Macedo Carvalho
    • 4
  • Patrícia Fontes Pinheiro
    • 4
  • Milene Miranda Praça-Fontes
    • 1
    Email author
  1. 1.Department of BiologyFederal University of the Espírito Santo, Alto UniversitárioAlegreBrazil
  2. 2.Department of AgronomyFederal University of the Espírito Santo, Alto UniversitárioAlegreBrazil
  3. 3.National School of Tropical BotanyRio de Janeiro Botanical Garden Research InstituteRio de JaneiroBrazil
  4. 4.Department of Chemistry and PhysicsFederal University of the Espírito Santo, Alto UniversitárioAlegreBrazil

Personalised recommendations