Advertisement

Simultaneous removal of metronidazole and Pb(II) from aqueous solution onto bifunctional activated carbons

  • Sonia Judith Segovia-Sandoval
  • Erika Padilla-Ortega
  • Francisco Carrasco-Marín
  • María Selene Berber-Mendoza
  • Raúl Ocampo-PérezEmail author
Research Article
  • 31 Downloads

Abstract

In this work, it was analyzed the behavior of three commercial activated carbons with different textural and chemical properties to adsorb individually metronidazole and lead ions from aqueous solution. Afterwards, the activated carbons were modified with citric acid to remove both compounds simultaneously. Both sets of activated carbons were characterized chemically and texturally. XPS analysis was performed to corroborate the adsorption mechanism of lead on the surface of the carbons. Finally, the intraparticle diffusion of both adsorbates was elucidated by the application of diffusional model in three dimensions. The results evidenced that adsorption mechanism for MNZ and Pb(II) is independent, the adsorption for MNZ is governed by ππ dispersive interactions, whereas Pb(II) adsorption is mainly controlled by electrostatic interactions. The binary adsorption equilibrium shows that the adsorption of MNZ is independent from the concentration of Pb(II), whereas the adsorption of Pb(II) is affected by the presence of MNZ at low concentrations (0.1 mmol L−1), but it remains almost constant at concentrations of MNZ between 0.1 and 1.5 mmol L−1. Finally, the mass transport of MNZ was faster than Pb(II) from the solution to the external surface of activated carbon and the mass flux of MNZ inside the particle was superior to the mass flux of Pb(II). Lastly, there might be an obstruction phenomenon with MNZ impeding Pb(II) to reach the active sites placed into the carbon’s microporosity structure.

Graphical abstract

Keywords

Single and binary adsorption Intraparticle diffusion Metronidazole Lead 

Nomenclature

m

Mass of adsorbent, g

q

Mass of MNZ or Pb(II) adsorbed on the adsorbent, mg g-1

V

Volume of the solution, L

CA

Concentration of Pb(II) or MNZ in aqueous solution, mg L−1

CAe

Concentration of MNZ or Pb(II) at equilibrium, mg L−1

CA0

Initial concentration of MNZ or Pb(II) in aqueous solution, mg L−1

CA,pred

Predicted concentration of MNZ or Pb(II) in aqueous solution, mg L−1

qm

Maximum mass of MNZ or Pb(II) adsorbed on the material, mg g−1

k

Equilibrium constant of Freundlich isotherm, mg1−1/n L1/n g−1

n

Freundlich isotherm constant related to the adsorbent–adsorbate affinity

K

Equilibrium constant of Langmuir isotherm related to the heat adsorption, L mg−1

a

Prausnitz–Radke isotherm constant, L g−1

b

Prausnitz–Radke isotherm constant, Lβ mgβ−1

β

Prausnitz–Radke isotherm constant

%D

Average absolute percentage deviation, %

N

Number of experimental data points

qi, exp

Mass of solute adsorbed at equilibrium

qi, cal

Mass of solute adsorbed at equilibrium predicted with diffusional model

SBET

Surface area per adsorbent mass unit, m2 g−1

Smic

Micropore area, m2 g−1

S

External surface area per mass of adsorbent, cm2 g−1

Vp

Total pore volume, cm3 g−1

Vmic

Micropore volume, cm3 g−1

dp

Average pore diameter, nm

L0

Average width of the micropores, nm

εp

Void fraction of carbon particles

ρp

Apparent density of adsorbent particles, g cm−3

ρs

Solid density of adsorbent particles, g cm−3

dp

Average pore diameter, nm

DAB

Molecular diffusion coefficient at infinite dilution, cm2 s−1

CAP|Bp-s

Concentration of Pb(II) or MNZ at the external surface of the particle, mg L−1

Ds

Surface diffusion coefficient, cm2 s−1

kL

External mass transfer coefficient in liquid phase, cm s−1

ϕA

Dimensionless concentration of MNZ or Pb(II) in the solution

NAS

Mass transport due to surface diffusion, mg cm−2 s−1

Notes

Acknowledgments

This work was funded by Consejo Nacional de Ciencia y Tecnología (National Council of Science and Technology), CONACyT, Mexico, through Grant No. 290817 and PN-2015-625.

References

  1. Apiratikul R, Pavasant P (2006) Sorption isotherm model for binary component sorption of copper, cadmium, and lead ions using dried green macroalga, Caulerpa lentillifera. Chem Eng J 119(2–3):135–145CrossRefGoogle Scholar
  2. Bertrand PA, Fleischauer PD (1980) X-ray photoelectron spectroscopy study of the surface adsorption of lead naphthenate. J Vac Sci 17(6):1309–1314CrossRefGoogle Scholar
  3. Boehm HP (1966) Chemical identification of surface groups. In: Advances in catalysis, vol 16. Academic Press, Cambridge, pp 179–274Google Scholar
  4. Bora T, Dutta J (2014) Applications of nanotechnology in wastewater treatment—a review. J Nanosci Nanotechnol 14(1):613–626CrossRefGoogle Scholar
  5. Carrales-Alvarado DH, Ocampo-Pérez R, Leyva-Ramos R, Rivera-Utrilla J (2014) Removal of the antibiotic metronidazole by adsorption on various carbon materials from aqueous phase. J Colloid Interface Sci 436:276–285CrossRefGoogle Scholar
  6. Deblonde T, Cossu-Leguille C, Hartemann P (2011) Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health 214(6):442–448CrossRefGoogle Scholar
  7. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418CrossRefGoogle Scholar
  8. Gurvich LG (1915) Physico-chemical force of attraction. J Phys Chem Soc Russia 47:805–827Google Scholar
  9. Hernandez-Eudave MT, Bonilla-Petriciolet A, Moreno-Virgen MR, Rojas-Mayorga CK, Tovar-Gómez R (2016) Design analysis of fixed-bed synergic adsorption of heavy metals and acid blue 25 on activated carbon. Desalin Water Treat 57(21):9824–9836CrossRefGoogle Scholar
  10. Jjemba PK (2006) Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. Ecotoxicol Environ Saf 63(1):113–130CrossRefGoogle Scholar
  11. Kuzin AIL (1996) J Appl Chem USSSR 39:85Google Scholar
  12. Leyva-Ramos R, Geankoplis CJ (1994) Diffusion in liquid-filled pores of activated carbon. I. Pore volume diffusion. Can J Eng 72(2):262–271CrossRefGoogle Scholar
  13. Leyva-Ramos R, Landin-Rodriguez LE, Leyva-Ramos S, Medellin-Castillo NA (2012) Modification of corncob with citric acid to enhance its capacity for adsorbing cadmium (II) from water solution. Chem Eng J 180:113–120CrossRefGoogle Scholar
  14. McCusker LB, Baerlocher C (2005) Zeolites structures. In: Cejka J, van Bekkum H (eds) Zeolites and ordered mesoporous materials: progress and prospects. Elsevier, The Netherlands, pp 41–62CrossRefGoogle Scholar
  15. Moral-Rodríguez AI, Leyva-Ramos R, Ocampo-Pérez R, Mendoza-Barron J, Serratos-Alvarez IN, Salazar-Rabago JJ (2016) Removal of ronidazole and sulfamethoxazole from water solutions by adsorption on granular activated carbon: equilibrium and intraparticle diffusion mechanisms. Adsorp 22(1):89–103CrossRefGoogle Scholar
  16. Nikolaou A, Meric S, Fatta D (2007) Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal Bioanal Chem 387(4):1225–1234CrossRefGoogle Scholar
  17. Ocampo-Perez R, Leyva-Ramos R, Alonso-Davila P, Rivera-Utrilla J, Sanchez-Polo M (2010) Modeling adsorption rate of pyridine onto granular activated carbon. Chem Eng J 165(1):133–141CrossRefGoogle Scholar
  18. Ocampo-Pérez R, Orellana-Garcia F, Sánchez-Polo M, Rivera-Utrilla J, Velo-Gala I, López-Ramón MV, Alvarez-Merino MA (2013) Nitroimidazoles adsorption on activated carbon cloth from aqueous solution. J Colloid Interface Sci 401:116–124CrossRefGoogle Scholar
  19. Papageorgiou SK, Katsaros FK, Kouvelos EP, Kanellopoulos NK (2009) Prediction of binary adsorption isotherms of Cu2+, Cd2+ and Pb2+ on calcium alginate beads from single adsorption data. J Hazard Mater 162(2–3):1347–1354CrossRefGoogle Scholar
  20. Pederson LR (1982) Two-dimensional chemical-state plot for lead using XPS. J Electron Spectros Relat Phenomena 28(2):203–209CrossRefGoogle Scholar
  21. Pitcher SK, Slade RCT, Ward NI (2004) Heavy metal removal from motorway stormwater using zeolites. Sci Total Environ 334:161–166CrossRefGoogle Scholar
  22. Radovic LR, Moreno-Castilla C, Rivera-Utrilla J (2001) Carbon materials as adsorbents in aqueous solutions. Chem Phys Carbon 27:227–405Google Scholar
  23. Rivera-Utrilla J, Prados-Joya G, Sánchez-Polo M, Ferro-García MA, Bautista-Toledo I (2009) Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon. J Hazard Mater 170(1):298–305CrossRefGoogle Scholar
  24. Salazar-Rabago JJ, Leyva-Ramos R (2016) Novel biosorbent with high adsorption capacity prepared by chemical modification of white pine (Pinus durangensis) sawdust. Adsorption of Pb (II) from aqueous solutions. J Environ Manag 169:303–312CrossRefGoogle Scholar
  25. Srivastava VC, Mall ID, Mishra IM (2006) Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash. Chem Eng J 117(1):79–91CrossRefGoogle Scholar
  26. Stoeckli F (1995) In: Patrick J (ed) Porosity in carbons: characterization and applications. Edward Arnold, London, pp 67–97Google Scholar
  27. Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Bioresour Technol 99(14):6017–6027CrossRefGoogle Scholar
  28. Tran HN, Van Viet P, Chao HP (2018) Surfactant modified zeolite as amphiphilic and dual-electronic adsorbent for removal of cationic and oxyanionic metal ions and organic compounds. Ecotoxicol Environ Saf 147:55–63CrossRefGoogle Scholar
  29. Wan S, Hua Z, Sun L, Bai X, Liang L (2016) Biosorption of nitroimidazole antibiotics onto chemically modified porous biochar prepared by experimental design: kinetics, thermodynamics, and equilibrium analysis. Process Saf Environ 104:422–435CrossRefGoogle Scholar
  30. Zhao S, Ba C, Yao Y, Zheng W, Economy J, Wang P (2018) Removal of antibiotics using polyethylenimine cross-linked nanofiltration membranes: relating membrane performance to surface charge characteristics. Chem Eng J 335:101–109CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sonia Judith Segovia-Sandoval
    • 1
  • Erika Padilla-Ortega
    • 2
  • Francisco Carrasco-Marín
    • 3
  • María Selene Berber-Mendoza
    • 1
  • Raúl Ocampo-Pérez
    • 2
    Email author
  1. 1.Centro de Investigación y Estudios de Posgrado, Facultad de IngenieríaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  3. 3.Departamento de Química Inorgánica, Facultad de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations