Environmental Science and Pollution Research

, Volume 26, Issue 25, pp 25844–25854 | Cite as

Ginkgo biloba mitigates silver nanoparticles-induced hepatotoxicity in Wistar rats via improvement of mitochondrial biogenesis and antioxidant status

  • Eman M. Abd El-Maksoud
  • Mohamed A. LebdaEmail author
  • Aml E. Hashem
  • Nabil M. Taha
  • Maher A. Kamel
Research Article


Silver nanoparticles (AgNPs) are noble metal nanoparticles, due to their good physicochemical properties, which have been exploited in biological applications. Nanotechnological applications advance very quickly while few literatures assessed the effects of natural products on the risks of nanoparticles in vivo. Thirty male adult rats were enrolled equally into: control, AgNPs (50 mg/kg b.w i.p 3 times/week) and GBE (100 mg/kg b.w daily per os)+AgNPs. After 30 days, the assessment of liver function, antioxidative status, mitochondrial biogenesis, and histopathological analyses were performed. AgNP exposure enhanced the hepatic lipid peroxidation (+ 281.7%) along with a decline in the reduced glutathione (− 58.3%) levels. The apparent hepatic oxidative damage was associated with obvious hepatic dysfunction that was ascertained by alteration of serum liver enzymatic biomarkers, lipid profile, and pathological hepatic lesions. Following AgNP exposure, hepatic silver and calcium contents were increased without changes in the trace element concentrations. Finally, the mRNA transcripts of hepatic PGC-1α, mtTFA, and Nrf2 were downregulated after AgNP exposure. Interestingly, GBE has the ability to alleviate AgNP-induced hepatic damage assessed by augmentation of reduced glutathione level and mitochondrial biogenesis. This study explored the potential protective role of GBE on AgNPs-induced hepatotoxicity via attenuation of oxidative stress, substantial enhancement of cell viability with concomitant mitigating DNA damage, and mitochondrial dysfunction.


Silver nanoparticles Ginkgo biloba Hepatotoxicity Necrosis Oxidative stress Mitochondrial biogenesis Glutathione 



silver nanoparticles


protein kinase B pathway


alanine aminotransferase


alkaline phosphatase


analysis of variance


antioxidant response element


aspartate aminotransferase


adenosine triphosphate


carbon tetrachloride


endoplasmic reticulum


Ginkgo biloba L. extract


reduced glutathione


oxidized glutathione


hydrochloric acid


high-density lipoprotein cholesterol


hematoxylin and eosin


nitric acid


inductively coupled plasma mass spectrometry


low-density lipoprotein cholesterol




mitochondrial transcription factor A


nuclear factor erythroid 2 like factor


peroxisome proliferative activated receptor gamma coactivators 1 alpha


reactive oxygen species


standard error




transmission electron microscope


Compliance with ethical standards

The handling of rats were performed according to international ethical guidelines for the care and use of laboratory animals and the approval of experimental procedures were done by the Experimental Animal Use and Ethics Committee at the Faculty of Veterinary Medicine, Alexandria University, Egypt.


  1. Ahmadi F, Branch S (2012) Impact of different levels of silver nanoparticles (Ag-NPs) on performance, oxidative enzymes and blood parameters in broiler chicks. Pak Vet J 32(3):325–328Google Scholar
  2. Ahmed MM, Hussein MM (2017) Neurotoxic effects of silver nanoparticles and the protective role of rutin. Biomed Pharmacother 1(90):731–739CrossRefGoogle Scholar
  3. Alam TI, Kanki T, Muta T, Ukaji K, Abe Y, Nakayama H, Takio K, Hamasaki N, Kang D (2003) Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res 31(6):1640–1645CrossRefGoogle Scholar
  4. Aljadaani BS, Bakr AA, Hamza AH (2016) Effect of Ginkgo biloba and Commiphora opobalsamum extracts on liver fibrosis and kidney injury induced by carbon tetra chloride in experimental models. World J Pharm Sci 4:148–152Google Scholar
  5. Altinsoy BD, Karatoprak GŞ, Ocsoy I (2019) Extracellular directed AgNPs formation and investigation of their antimicrobial and cytotoxic properties. Saudi Pharm J 27(1):9–16CrossRefGoogle Scholar
  6. Aquilano K, Vigilanza P, Baldelli S, Pagliei B, Rotilio G, Ciriolo MR (2010) Peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and Sirtuin 1 (SIRT1) reside in mitochondria possible direct function in mitochondrial biogenesis. J Biol Chem 285(28):21590–21599CrossRefGoogle Scholar
  7. Aquilano K, Baldelli S, Pagliei B, Ciriolo R (2013) Extranuclear localization of SIRT1 and PGC-1α: an insight into possible roles in diseases associated with mitochondrial dysfunction. Curr Mol Med 13(1):140–154CrossRefGoogle Scholar
  8. Blanco J, Tomás-Hernández S, García T, Mulero M, Gómez M, Domingo JL, Sánchez DJ (2018) Oral exposure to silver nanoparticles increases oxidative stress markers in the liver of male rats and deregulates the insulin signaling pathway and p53 and cleaved caspase 3 protein expression. Food Chem Toxicol 115:398–404CrossRefGoogle Scholar
  9. Bressan E, Ferroni L, Gardin C, Rigo C, Stocchero M, Vindigni V, Cairns W, Zavan B (2013) Silver nanoparticles and mitochondrial interaction. Int J DentGoogle Scholar
  10. Cameron S, Hosseinian F, Willmore W (2018) A current overview of the biological and cellular effects of nanosilver. Int J Mol Sci 19(7):2030CrossRefGoogle Scholar
  11. Chen XJ, Ren SM, Dong JZ, Qiu CG, Chen YW, Tao HL (2019) Ginkgo biloba extract-761 protects myocardium by regulating Akt/Nrf2 signal pathway. Drug Des Dev Ther 13:647–655CrossRefGoogle Scholar
  12. Cheng X, Zhang W, Ji Y, Meng J, Guo H, Liu J, Wu X, Xu H (2013) Revealing silver cytotoxicity using Au nanorods/Ag shell nanostructures: disrupting cell membrane and causing apoptosis through oxidative damage. RSC Adv 3(7):2296–2305CrossRefGoogle Scholar
  13. Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi J, Ryu DY (2010) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 100(2):151–159CrossRefGoogle Scholar
  14. Choi Y, Kim HA, Kim KW, Lee BT (2018) Comparative toxicity of silver nanoparticles and silver ions to Escherichia coli. J Environ Sci 66:50–60CrossRefGoogle Scholar
  15. Ekstrand MI, Falkenberg M, Rantanen A, Park CB, Gaspari M, Hultenby K, Rustin P, Gustafsson CM, Larsson NG (2004) Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet 13(9):935–944CrossRefGoogle Scholar
  16. El Mahdy MM, Eldin TA, Aly HS, Mohammed FF, Shaalan MI (2015) Evaluation of hepatotoxic and genotoxic potential of silver nanoparticles in albino rats. Exp Toxicol Pathol 67(1):21–29CrossRefGoogle Scholar
  17. Elle RE, Gaillet S, Vide J, Romain C, Lauret C, Rugani N, Cristol JP, Rouanet JM (2013) Dietary exposure to silver nanoparticles in Sprague–Dawley rats: effects on oxidative stress and inflammation. Food Chem Toxicol 1(60):297–301CrossRefGoogle Scholar
  18. Erikson KM, Dobson AW, Dorman DC, Aschner M (2004) Manganese exposure and induced oxidative stress in the rat brain. Sci Total Environ 1(334):409–416CrossRefGoogle Scholar
  19. Friedman JR, Nunnari J (2014) Mitochondrial form and function. Nature 505(7483):335–343CrossRefGoogle Scholar
  20. Gao M, Zhao B, Chen M, Liu Y, Xu M, Wang Z, Liu S, Zhang C (2017) Nrf-2-driven long noncoding RNA ODRUL contributes to modulating silver nanoparticle-induced effects on erythroid cells. Biomaterials 130:14–27CrossRefGoogle Scholar
  21. Garstka HL, Schmitt WE, Schultz J, Sogl B, Silakowski B, Pérez-Martos A, Montoya J, Wiesner RJ (2003) Import of mitochondrial transcription factor A (TFAM) into rat liver mitochondria stimulates transcription of mitochondrial DNA. Nucleic Acids Res 31(17):5039–5047CrossRefGoogle Scholar
  22. George S, Lin S, Ji Z, Thomas CR, Li L, Mecklenburg M, Meng H, Wang X, Zhang H, Xia T, Hohman JN (2012) Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 6(5):3745–3759CrossRefGoogle Scholar
  23. Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106(1):207–212CrossRefGoogle Scholar
  24. Hu T, Wei G, Xi M, Yan J, Wu X, Wang Y, Zhu Y, Wang C, Wen A (2016) Synergistic cardioprotective effects of Danshensu and hydroxysafflor yellow A against myocardial ischemia-reperfusion injury are mediated through the Akt/Nrf2/HO-1 pathway. Int J Mol Med 38(1):83–94CrossRefGoogle Scholar
  25. Ibrahim AE, Fadhil DH, Jawad AH, Thabit J, Alqadery R, Yousif E, Al-Amiery A (2016) Ginkgo biloba for reducing hyperlipideamia: case study.
  26. Kim MS, Bang JH, Lee J, Han JS, Baik TG, Jeon WK (2016) Ginkgo biloba L. extract protects against chronic cerebral hypoperfusion by modulating neuroinflammation and the cholinergic system. Phytomedicine 23(12):1356–1364CrossRefGoogle Scholar
  27. Lebda MA, Sadek KM, Tohamy HG, Abouzed TK, Shukry M, Umezawa M, El-Sayed YS (2018) Potential role of α-lipoic acid and Ginkgo biloba against silver nanoparticles-induced neuronal apoptosis and blood-brain barrier impairments in rats. Life Sci 1(212):251–260CrossRefGoogle Scholar
  28. Lee TY, Liu MS, Huang LJ, Lue SI, Lin LC, Kwan AL, Yang RC (2013) Bioenergetic failure correlates with autophagy and apoptosis in rat liver following silver nanoparticle intraperitoneal administration. Part Fibre Toxicol 10(1):40CrossRefGoogle Scholar
  29. McAuliffe ME, Perry MJ (2007) Are nanoparticles potential male reproductive toxicants? A literature review. Nanotoxicology 1(3):204–210CrossRefGoogle Scholar
  30. Mei N, Guo X, Ren Z, Kobayashi D, Wada K, Guo L (2017) Review of Ginkgo biloba-induced toxicity, from experimental studies to human case reports. J Environ Sci Health C 35(1):1–28CrossRefGoogle Scholar
  31. Ognik K, Cholewińska E, Czech A, Kozłowski K, Nowakowicz-Dębek B, Szlązak R, Tutaj K (2016) Effect of silver nanoparticles on the immune, redox, and lipid status of chicken blood. Czech J Anim Sci 61(10):450–461CrossRefGoogle Scholar
  32. Oh JH, Son MY, Choi MS, Kim S, Choi AY, Lee HA, Kim KS, Kim J, Song CW, Yoon S (2016) Integrative analysis of genes and miRNA alterations in human embryonic stem cells-derived neural cells after exposure to silver nanoparticles. Toxicol Appl Pharmacol 15(299):8–23CrossRefGoogle Scholar
  33. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358CrossRefGoogle Scholar
  34. Quinteros MA, Viviana CA, Onnainty R, Mary VS, Theumer MG, Granero GE, Paraje MG, Páez PL (2018) Biosynthesized silver nanoparticles: decoding their mechanism of action in Staphylococcus aureus and Escherichia coli. Int J Biochem Cell Biol 1(104):87–93CrossRefGoogle Scholar
  35. Satta S, Mahmoud AM, Wilkinson FL, Yvonne Alexander M, White SJ (2017) The role of Nrf2 in cardiovascular function and disease. Oxidative Med Cell LongevGoogle Scholar
  36. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, Simon DK (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127(2):397–408CrossRefGoogle Scholar
  37. Suliman HB, Carraway MS, Piantadosi CA (2003) Post lipopolysaccharide oxidative damage of mitochondrial DNA. Am J Respir Crit Care Med 167(4):570–579CrossRefGoogle Scholar
  38. Tiwari DK, Jin T, Behari J (2011) Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol Mech Methods 21(1):13–24CrossRefGoogle Scholar
  39. van Beek TA, Montoro P (2009) Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J Chromatogr A 1216(11):2002–2032CrossRefGoogle Scholar
  40. van der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, Gremmer ER, Mast J, Peters RJ, Hollman PC, Hendriksen PJ (2012) Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6(8):7427–7442CrossRefGoogle Scholar
  41. Ventura-Clapier R, Garnier A, Veksler V (2008) Transcriptional control of mitochondrial biogenesis: the central role of PGC-1α. Cardiovasc Res 79(2):208–217CrossRefGoogle Scholar
  42. Wahby MM, Abdallah ZM, Abdou HM, Yousef MI, Newairy AS (2017) Mitigating potential of Ginkgo biloba extract and melatonin against hepatic and nephrotoxicity induced by bisphenol A in male rats. Egypt J Basic Appl Sci 4(4):350–357CrossRefGoogle Scholar
  43. Wang Z, Liu S, Ma J, Qu G, Wang X, Yu S, He J, Liu J, Xia T, Jiang GB (2013) Silver nanoparticles induced RNA polymerase-silver binding and RNA transcription inhibition in erythroid progenitor cells. ACS Nano 7(5):4171–4186CrossRefGoogle Scholar
  44. Wang E, Huang Y, Du Q, Sun Y (2017) Silver nanoparticle induced toxicity to human sperm by increasing ROS (reactive oxygen species) production and DNA damage. Environ Toxicol Pharmacol 52:193–199CrossRefGoogle Scholar
  45. Wijnhoven SW, Peijnenburg WJ, Herberts CA, Hagens WI, Oomen AG, Heugens EH, Roszek B, Bisschops J, Gosens I, Van De Meent D, Dekkers S (2009) Nano-silver–a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3(2):109–138CrossRefGoogle Scholar
  46. Yang L, Li Y, Ma X, Yan Q (2013) Comparison of dry ashing, wet ashing and microwave digestion for determination of trace elements in periostracum serpentis and periostracum cicadae by ICP-AES. J Chil Chem Soc 58(3):1876–1879CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Eman M. Abd El-Maksoud
    • 1
  • Mohamed A. Lebda
    • 1
    Email author
  • Aml E. Hashem
    • 1
  • Nabil M. Taha
    • 1
  • Maher A. Kamel
    • 2
  1. 1.Department of Biochemistry, Faculty of Veterinary MedicineAlexandria UniversityAlexandriaEgypt
  2. 2.Department of Biochemistry, Institute of Medical ResearchAlexandria UniversityAlexandriaEgypt

Personalised recommendations