Hydrological tracers, the herbicide metazachlor and its transformation products in a retention pond during transient flow conditions

  • Uta UlrichEmail author
  • Jens Lange
  • Matthias Pfannerstill
  • Lukas Loose
  • Nicola Fohrer
Research Article


Since decades, surface water bodies have been exposed to pesticides from agriculture. In many places, retention systems are regarded as an important mitigation strategy to lower pesticide pollution. Hence, the processes governing the transport of pesticides in and through a retention system have to be understood to achieve sufficient pesticide attenuation. In this study, the temporal dynamics of metazachlor and its transformation products metazachlor-oxalic acid (OA) and –sulphonic acid (ESA) were observed in an agricultural retention pond and hydrologic tracers helped to understand system-inherent processes. Pesticide measurements were carried out for 80 days after their application during transient flow conditions. During a short-term (3 days) experiment, the tracers bromide, uranine and sulphorhodamine B were used to determine hydraulic conditions, residence times and sorption potential. A long-term experiment with sodium naphthionate (2 months) and isotopes (12 months) provided information about inputs via interflow and surface-groundwater interactions. During transient conditions, high concentration pulses of up to 35 μg L−1 metazachlor, 14.7 μg L−1 OA and 22.5 μg L−1 ESA were quantified that enduringly raised solute concentrations in the pond. Mean residence time in the system accounted for approximately 4 h showing first tracer breakthrough after 5 min and last tracer concentrations 72 h after injection. While input via interflow was confirmed, no evidence for surface-groundwater interaction was found. Different tracers illustrated potentials for sorption and photolytic degradation inside the system. This study shows that high-resolution sampling is essential to obtain robust results about retention efficiency and that hydrological tracers may be used to determine the governing processes.


Detention Pesticide Breakthrough curve Mitigation strategies Tracer 



We thank the farmer Philipp Hansen for the provision of rainfall data from 1998 to 2017 in the study area.


The study was funded by the German Federal Ministry for Education and Research (BMBF) (02WRM1366C).


  1. Brown CD, van Beinum W (2009) Pesticide transport via sub-surface drains in Europe. Environ Pollut 157:3314–3324. CrossRefGoogle Scholar
  2. ChemIDplus [WWW Document] 2018 ChemIDplus advanced - chemical information with searchable synonyms, structures, and formulas, a toxnet database. URL (accessed 10.7.18)
  3. Dechene A, Rosendahl I, Laabs V, Amelung W (2014) Sorption of polar herbicides and herbicide metabolites by biochar-amended soil. Chemosphere 109:180–186. CrossRefGoogle Scholar
  4. Dollinger J, Dagès C, Voltz M (2017) Using fluorescent dyes as proxies to study herbicide removal by sorption in buffer zones. Environ Sci Pollut Res 24:11752–11763. CrossRefGoogle Scholar
  5. DWD, German Weather Service (Deutscher Wetterdienst) 2017 Monats- und Jahreswerte für Schleswig - Temperatur, Niederschlag und Sonnenschein - WetterKontor [WWW Document]. URL (accessed 2.6.17)
  6. Elsaesser D, Blankenberg A-GB, Geist A, Mæhlum T, Schulz R (2011) Assessing the influence of vegetation on reduction of pesticide concentration in experimental surface flow constructed wetlands: application of the toxic units approach. Ecol Eng 37:955–962. CrossRefGoogle Scholar
  7. Gaullier C, Dousset S, Billet D, Baran N 2017 Influence of hydraulic parameters on the pesticides retention in constructed wetlands. Presented at the Pesticide Behaviour in Soils, Water and Air Conference- 7th edition, 30/08–03/9/2017 in York/UKGoogle Scholar
  8. Gooseff MN, Bencala KE, Scott DT, Runkel RL, McKnight DM (2005) Sensitivity analysis of conservative and reactive stream transient storage models applied to field data from multiple-reach experiments. Adv Water Resour 28:479–492. CrossRefGoogle Scholar
  9. Gooseff MN, Payn RA, Zarnetske JP, Bowden WB, McNamara JP, Bradford JH (2008) Comparison of in-channel mobile–immobile zone exchange during instantaneous and constant rate stream tracer additions: implications for design and interpretation of non-conservative tracer experiments. J Hydrol 357:112–124. CrossRefGoogle Scholar
  10. Gregoire C, Elsaesser D, Huguenot D, Lange J, Lebeau T, Merli A, Mose R, Passeport E, Payraudeau S, Schütz T, Schulz R, Tapia-Padilla G, Tournebize J, Trevisan M, Wanko A (2009) Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems – a review, climate change, intercropping, pest control and beneficial microorganisms, vol 2. Springer Science & Business Media, Dordrecht, pp 293–338CrossRefGoogle Scholar
  11. Imfeld G, Braeckevelt M, Kuschk P, Richnow HH (2009) Monitoring and assessing processes of organic chemicals removal in constructed wetlands. Chemosphere 74:349–362. CrossRefGoogle Scholar
  12. Kadlec RH (2009) Comparison of free water and horizontal subsurface treatment wetlands. Ecol Eng 35:159–174. CrossRefGoogle Scholar
  13. Kadlec RH, Wallace S (2008) Treatment wetlands, 2nd edn. CRC Press, Boca Raton ISBN 9781566705264 - CAT# L1526CrossRefGoogle Scholar
  14. Kiesel J, Fohrer N, Schmalz B, White MJ (2010) Incorporating landscape depressions and tile drainages of a northern German lowland catchment into a semi-distributed model. Hydrol Process 24:1472–1486. CrossRefGoogle Scholar
  15. Kreuger J (1998) Pesticides in stream water within an agricultural catchment in southern Sweden, 1990–1996. Sci Total Environ 216:227–251. CrossRefGoogle Scholar
  16. Lange J, Schuetz T, Gregoire C, Elsässer D, Schulz R, Passeport E, Tournebize J (2011) Multi-tracer experiments to characterise contaminant mitigation capacities for different types of artificial wetlands. Int J Environ Anal Chem 91:768–785. CrossRefGoogle Scholar
  17. Leibundgut C, Maloszewski P, Külls C (2009) Tracers in hydrology. Wiley, Hoboken Ltd, ISBN 978-0-470-74714-8CrossRefGoogle Scholar
  18. Lewis KA, Tzilivakis J, Warner DJ, Green A (2016) An international database for pesticide risk assessments and management. Hum Ecol Risk Assess Int J 22:1050–1064. CrossRefGoogle Scholar
  19. Lyu T, Zhang L, Xu X, Arias CA, Brix H, Carvalho PN (2018) Removal of the pesticide tebuconazole in constructed wetlands: design comparison, influencing factors and modelling. Environ Pollut 233:71–80. CrossRefGoogle Scholar
  20. Maillard E, Lange J, Schreiber S, Dollinger J, Herbstritt B, Millet M, Imfeld G (2016) Dissipation of hydrological tracers and the herbicide S-metolachlor in batch and continuous-flow wetlands. Chemosphere 144:2489–2496. CrossRefGoogle Scholar
  21. Maillard E, Payraudeau S, Faivre E, Grégoire C, Gangloff S, Imfeld G (2011) Removal of pesticide mixtures in a stormwater wetland collecting runoff from a vineyard catchment. Sci Total Environ 409:2317–2324. CrossRefGoogle Scholar
  22. Oberem J 2013 Quantifizierung der Stickstoffretention in einem Dränteich mit einer Abschätzung des Anwendungspotentials auf Einzugsgebietsebene. Christian-Albrechts Universität Kiel, Master ThesisGoogle Scholar
  23. O’Geen AT, Budd R, Gan J, Maynard JJ, Parikh SJ, Dahlgren RA (2010) Mitigating Nonpoint Source Pollution in Agriculture with Constructed and Restored Wetlands. In: Chapter one - mitigating nonpoint source pollution in agriculture with constructed and restored wetlands. Advances in agronomy 108. Academic Press, pp 1–76.
  24. Passeport E, Tournebize J, Jankowfsky S, Prömse B, Chaumont C, Coquet Y, Lange J (2010) Artificial wetland and forest buffer zone. Hydraulic and tracer characterization. Vadose Zone J 9:73–84. CrossRefGoogle Scholar
  25. Persson J, Wittgren HB (2003) How hydrological and hydraulic conditions affect performance of ponds. Ecol Eng 21:259–269. CrossRefGoogle Scholar
  26. Pfannerstill M, Guse B, Fohrer N (2014) A multi-storage groundwater concept for the 1 SWAT model to emphasize nonlinear 2 groundwater dynamics in lowland catchments. Hydrol Process 28:5599–5621. CrossRefGoogle Scholar
  27. Pfannerstill M, Guse B, Reusser D, Fohrer N (2015) Process verification of a hydrological model using a temporal parameter sensitivity analysis. Hydrol Earth Syst Sci 19:4365–4376. CrossRefGoogle Scholar
  28. Pfannerstill M, Kühling I, Hugenschmidt C, Trepel M, Fohrer N (2016) Reactive ditches: a simple approach to implement denitrifying wood chip bioreactors to reduce nitrate exports into aquatic ecosystems. Environ Earth Sci 75:1063. CrossRefGoogle Scholar
  29. Reichenberger S, Bach M, Skitschak A, Frede H-G (2007) Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; a review. Sci Total Environ 384:1–35. CrossRefGoogle Scholar
  30. Rose MT, Crossan AN, Kennedy IR (2008) The effect of vegetation on pesticide dissipation from ponded treatment wetlands: quantification using a simple model. Chemosphere 72:999–1005. CrossRefGoogle Scholar
  31. Sabatini DA (2000) Sorption and intraparticle diffusion of fluorescent dyes with consolidated aquifer media. Groundwater 38:651–656. CrossRefGoogle Scholar
  32. Sandin M, Piikki K, Jarvis N, Larsbo M, Bishop K, Kreuger J (2018) Spatial and temporal patterns of pesticide concentrations in streamflow, drainage and runoff in a small Swedish agricultural catchment. Sci Total Environ 610–611:623–634. CrossRefGoogle Scholar
  33. Schreiner VC, Szöcs E, Bhowmik AK, Vijver MG, Schäfer RB (2016) Pesticide mixtures in streams of several European countries and the USA. Sci Total Environ 573:680–689. CrossRefGoogle Scholar
  34. Stehle S, Bub S, Schulz R (2018) Compilation and analysis of global surface water concentrations for individual insecticide compounds. Sci Total Environ 639:516–525. CrossRefGoogle Scholar
  35. Tang X, Zhu B, Katou H (2012) A review of rapid transport of pesticides from sloping farmland to surface waters: processes and mitigation strategies. J Environ Sci 24:351–361. CrossRefGoogle Scholar
  36. Tournebize J, Chaumont C, Fesneau C, Guenne A, Vincent B, Garnier J, Mander Ü (2015) Long-term nitrate removal in a buffering pond-reservoir system receiving water from an agricultural drained catchment. Ecol Eng 80:32–45. Special Issue: 5th international Symposium on Wetland Pollutant Dynamics and Control. CrossRefGoogle Scholar
  37. Tournebize J, Chaumont C, Mander Ü (2017) Implications for constructed wetlands to mitigate nitrate and pesticide pollution in agricultural drained watersheds. Ecol Eng 103:415–425. CrossRefGoogle Scholar
  38. Ulrich U, Hörmann G, Unger M, Pfannerstill M, Steinmann F, Fohrer N (2018) Lentic small water bodies: variability of pesticide transport and transformation patterns. Sci Total Environ 618:26–38. CrossRefGoogle Scholar
  39. Ulrich U, Schulz F, Hugenschmidt C, Fohrer N (2012) Vergleichende Messungen zu Herbizidausträgen auf drei unterschiedlichen Größenskalen. Hydrol Wasserbewirtsch 56:215–228Google Scholar
  40. Vallée R, Dousset S, Schott F-X, Pallez C, Ortar A, Cherrier R, Munoz J-F, Benoît M (2015) Do constructed wetlands in grass strips reduce water contamination from drained fields? Environ Pollut 207:365–373. CrossRefGoogle Scholar
  41. Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65. CrossRefGoogle Scholar
  42. Vymazal J, Březinová T (2015) The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review. Environ Int 75:11–20. CrossRefGoogle Scholar
  43. Ward AS, Gooseff MN, Singha K (2010) Imaging hyporheic zone solute transport using electrical resistivity. Hydrol Process 24:948–953. CrossRefGoogle Scholar
  44. Willkommen S, Pfannerstill M, Guse B, Ulrich U, Fohrer N (2017) PondR: a process-oriented model to simulate the hydrology of drainage ponds. J Hydroinf 20:149–163. CrossRefGoogle Scholar
  45. Willkommen S, Pfannerstill M, Ulrich U, Guse B, Fohrer N (2019) How weather conditions and physico-chemical properties control the leaching of flufenacet, diflufenican, and pendimethalin in a tile-drained landscape. Agric Ecosyst Environ 278:107-116.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Uta Ulrich
    • 1
    Email author
  • Jens Lange
    • 2
  • Matthias Pfannerstill
    • 3
  • Lukas Loose
    • 1
  • Nicola Fohrer
    • 1
  1. 1.Institute of Natural Resource ConservationKiel UniversityKielGermany
  2. 2.Albert-Ludwigs-University of FreiburgFreiburgGermany
  3. 3.State Agency for AgricultureThe Environment and Rural Areas Schleswig-HolsteinFlintbekGermany

Personalised recommendations