Advertisement

Modeling and Cr(VI) ion uptake kinetics of Sorghum bicolor plant assisted by plant growth–promoting Pannonibacter phragmetitus: an ecofriendly approach

  • Ponnambalam Ragini Yaashikaa
  • Ponnusamy Senthil KumarEmail author
  • Anbalagan Saravanan
Sustainable Industrial and Environmental Bioprocesses
  • 37 Downloads

Abstract

The research work focuses on the application of Cr(VI)-resistant plant growth–promoting bacteria Pannonibacter phragmetitus for enhancing Cr(VI) uptake by Sorghum bicolor. Significant increase in plant shoot and root characters was found when assisted by P. phragmetitus. The obtained strain showed 700 mg/L of chromium reduction at 24-h incubation. Indole-3 acetic acid (IAA) production by the bacterial strain was found to be 86.45 μg/mL. Pannonibacter phragmetitus solubilized tricalcium phosphate showing maximum solubilizing activity of PSI = 3.31. The qmax of P. phragmetitus was high in the wavelength of 600 nm. Langmuir isotherm best described the Cr(VI) ion uptake by the plant. The RL values reliably reduced with expanding Cr(VI) ion concentration from 25 to 150 mg/L. The outcomes of kinetic studies showed that compared with pseudo first-order, pseudo second-order kinetics better describes the plant Cr(VI) uptake rate. Elovich model describes the increased rates for attaining equilibrium. The equilibrium parameter values for different Cr(VI) ion concentrations range between 0 and 1 which describes the favorable condition for plant metal uptake at different concentrations.

Graphical abstract

Keywords

Pannonibacter phragmetitus Sorghum bicolor Phytoaccumulation Uptake kinetics Isotherm 

Notes

References

  1. Al-Anbari R, Al-Obaidy AHMJ, Al-Imari TJ (2016) Phytoremediation of Cr and Pb from soil irrigated by wastewater. Eng Technol J 34(13):2380–2386Google Scholar
  2. Anning AK, Akoto R (2018) Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides. Ecotoxicol Environ Saf 148:97–104CrossRefGoogle Scholar
  3. Attinti R, Barret KR, Datta R, Sarkar D (2017) Ethylenediamine disuccinic acid (EDDS) enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field. Environ Pollut 225:524–533CrossRefGoogle Scholar
  4. Bacaha N, Shamas R, Bakht J, Rafi A, Tullah F, Gillani A (2015) Effects of heavy metal and EDTA application on plant growth and phytoextraction potential of sorghum (Sorghum bicolor). Pak J Bot 47(5):1679–1684Google Scholar
  5. Basha CA, Ramanathan K, Rajkumar R, Mahalakshmi M, Kumar PS (2008) Management of chromium plating rinsewater using electrochemical ion exchange. Ind Eng Chem Res 47:2279–2286CrossRefGoogle Scholar
  6. Bolan NS, Park JH, Brett R, Naidu R, Huh KY (2011) Phytostabilization: a green approach to contaminant containment. Adv Agron 112:145–204CrossRefGoogle Scholar
  7. Caravelli AH, Giannuzzi L, Noem E (2008) Reduction of hexavalent chromium by Sphaerotilus natans a filamentous micro-organism present in activated sludges. J Hazard Mater 156(1–3):214–222CrossRefGoogle Scholar
  8. Chen Y, Ding Q, Chao Y, Wei X, Wang S, Qiu R (2018) Structural development and assembly patterns of the root-associated microbiomes during phytoremediation. Sci Total Environ 644:1592–1601Google Scholar
  9. Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–470Google Scholar
  10. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374CrossRefGoogle Scholar
  11. Gunasundari E, Kumar PS (2016) Higher adsorption capacity of Spirulina platensis alga for Cr (VI) ions removal: parameter optimisation, equilibrium, kinetic and thermodynamic predictions. IET Nanobiotechnol 11:317–328CrossRefGoogle Scholar
  12. Hanif MA, Bhatti HN (2015) Remediation of heavy metals using easily cultivable, fast-growing, and highly accumulating white rot fungi from hazardous aqueous streams. Desal Water Treat 53:238–248CrossRefGoogle Scholar
  13. Ho YS, Mckay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465CrossRefGoogle Scholar
  14. Hu Y, Wang D, Wei L, Zhang X, Song B (2014) Bioaccumulation of heavy metals in plant leaves from Yan’an city of the Loess Plateau, China. Ecotoxicol Environ Saf 110:82–88CrossRefGoogle Scholar
  15. Huang H, Wu K, Khan A, Jiang Y, Ling Z, Liu P, Chen Y, Tao X, Li X (2016) A novel Pseudomonas gessardii strain LZ-E simultaneously degrades naphthalene and reduces hexavalent chromium. Bioresour Technol 207:370–378CrossRefGoogle Scholar
  16. Hussain I, Aleti G, Naidu R, Puschenreiter M, Mahmood Q, Rahman MM, Wang F, Shaheen S, Syed JH, Reichenauer TG (2018) Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: a review. Sci Total Environ 628–629:1582–1599CrossRefGoogle Scholar
  17. Karthik C, Ramkumar VS, Pugazhendhi A, Gopalakrishnan K, Arulselvi PI (2017) Biosorption and biotransformation of Cr(VI) by novel Cellulosimicrobium funkei strain AR6. J Taiwan Inst Chem Eng 70:282–290CrossRefGoogle Scholar
  18. Kleckerova A, Docekalova H (2014) Dandelion plants as a biomonitor of urban area contamination by heavy metals. Int J Environ Res 8(1):157–164Google Scholar
  19. Kumar PS, Kirthika K, Kumar KS (2008) Removal of hexavalent chromium ions from aqueous solutions by an anion-exchange resin. Adsorpt Sci Technol 26:693–703CrossRefGoogle Scholar
  20. Kumar PS, Sivaranjanee R, Saravanan A (2018) Carbon sphere: synthesis, characterization and elimination of toxic Cr (VI) ions from aquatic system. J Ind Eng Chem 60:307–320CrossRefGoogle Scholar
  21. Lagergren S (1898) About the theory of so-called adsorption of soluble substances K. Sven. Vetenskapsakad Handl 24:1–39Google Scholar
  22. Langmuir (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1362–1403CrossRefGoogle Scholar
  23. Lin M, Jin M, Xu K, he L, Cheng D (2018) Phosphate-solubilising bacteria improve the phytoremediation efficiency of Wedelia trilobata for Cu-contaminated soil. Int J Phytoremed 20(11):813–822CrossRefGoogle Scholar
  24. Low MJD (1960) Kinetics of chemisorption of gases on solids. Chem Rev 60:267–312CrossRefGoogle Scholar
  25. Luo J, Qi S, Gu XWS, Wang J, Xie X (2016) Evaluation of the phytoremediation effect and environmental risk in remediation processes under different cultivation systems. J Clean Prod 119:25–31CrossRefGoogle Scholar
  26. Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121CrossRefGoogle Scholar
  27. Mao F, Nan G, Cao M, Gao Y, Guo L, Meng X, Yang G (2018) The metal distribution and the change of physiological and biochemical process in soybean and mung bean plants under heavy metal stress. Int J Phytoremed 20(11):1113–1120CrossRefGoogle Scholar
  28. Marzban A, Ebrahimipour G, Karkhane M, Teymouri M (2016) Metal resistant and phosphate solubilizing bacterium improves maize (Zea mays) growth and mitigates metal accumulation in the plant. Biocatal Agric Biotechnol 8:13–17CrossRefGoogle Scholar
  29. Muthukumar T, Udaiyan K (2018) Coinoculation of bioinoculants improve Acacia auriculiformis seedling growth and quality in a tropical Alfisol soil. J For Res 29:663–673CrossRefGoogle Scholar
  30. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270CrossRefGoogle Scholar
  31. Pan X, Liu Z, Chen Z, Cheng Y, Pan D, Shao J, Lin Z, Guan X (2014) Investigation of Cr (VI) reduction and Cr (III) immobilization mechanism by planktonic cells and biofilms of Bacillus subtilis ATCC-6633. Water Res 55:21–119CrossRefGoogle Scholar
  32. Pavithra KG, Kumar PS, Christopher FC, Saravanan A (2017) Removal of toxic Cr (VI) ions from tannery industrial wastewater using a newly designed three-phase three-dimensional electrode reactor. J Phys Chem Solids 110:379–385CrossRefGoogle Scholar
  33. Prapagdee B, Chanprasert M, Mongkolsuk S (2013) Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere 92:659–666CrossRefGoogle Scholar
  34. Saravanan A, Kumar PS, Yashwanthraj M (2017) Sequestration of toxic Cr (VI) ions from industrial wastewater using waste biomass: a review. Desalin Water Treat 68:245–266CrossRefGoogle Scholar
  35. Sharma P, Pandey S (2014) Status of phytoremediation in world scenario. Int J Environ Bioremed Biodegrad 2(4):178–191Google Scholar
  36. Siripan O, Thamchaipenet A, Surat W (2018) Enhancement of the efficiency of Cd phytoextraction using bacterial endophytes isolated from Chromolaena odorata, a Cd hyperaccumulator. Int J Phytoremed 20(11):1096–1105CrossRefGoogle Scholar
  37. Suganya S, Kumar PS (2018) Influence of ultrasonic waves on preparation of active carbon from coffee waste for the reclamation of effluents containing Cr (VI) ions. J Ind Eng Chem 60:418–430CrossRefGoogle Scholar
  38. Sultan S, Hasnain S (2007) Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals. Bioresour Technol 98(2):340–344CrossRefGoogle Scholar
  39. Tang X, Pang Y, Ji P, Gao P, Nguyen TH (2016) Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.). Ecotoxicol Environ Saf 125:102–106CrossRefGoogle Scholar
  40. Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40CrossRefGoogle Scholar
  41. Waigi MG, Sun K, Gao Y (2017) Sphingomonas in microbe-assisted phytoremediation: tackling soil pollution. Trends Biotechnol 35(9):883–899CrossRefGoogle Scholar
  42. Wang Y, Peng B, Yang Z, Tang C, Chen Y, Liao Q, Liao Y (2014) Treatment of chromium (VI) contaminated water with Pannonibacter phragmitetus BB. Environ. Earth Sci 71:4333–4339CrossRefGoogle Scholar
  43. Wani PA, Khan MS (2013) Nickel detoxification and plant growth promotion by multi-metal resistant plant growth promoting Rhizobium species RL9. Bull Environ Contam Toxicol 91(1):117–124CrossRefGoogle Scholar
  44. Yadav KK, Gupta N, Kumar A, Reece LM, Singh N, Rezania S, Khan SA (2018) Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecol Eng 120:274–298CrossRefGoogle Scholar
  45. Zakaria ZA, Zakaria Z, Surif S, Ahmad WA (2007) Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater. J Hazard Mater 146(1–2):30–38CrossRefGoogle Scholar
  46. Zhang D-L, Zhang M, Zhang C, Sun Y, Sun X, Yuan X (2016) Pyrolysis treatment of chromite ore processing residue by biomass: cellulose pyrolysis and Cr(VI) reduction behaviour. Environ Sci Technol 50(6):3111–3118CrossRefGoogle Scholar
  47. Zhang X, Li M, Yang H, Li X, Cui Z (2018) Physiological responses of Suaeda glauca and Arabidopsis thaliana in phytoremediation of heavy metals. J Environ Manag 223:132–139CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ponnambalam Ragini Yaashikaa
    • 1
  • Ponnusamy Senthil Kumar
    • 1
    Email author
  • Anbalagan Saravanan
    • 2
  1. 1.Department of Chemical EngineeringSSN College of EngineeringChennaiIndia
  2. 2.Department of BiotechnologyRajalakshmi Engineering CollegeChennaiIndia

Personalised recommendations