Advertisement

Exposure to bisphenol A and diabetes risk in Mexican women

  • Luke Murphy
  • Ángel Mérida-Ortega
  • Mariano E. Cebrián
  • Lucia Hernández-Garciadiego
  • Humberto Gómez-Ruiz
  • Brenda Gamboa-Loira
  • Lizbeth López-CarrilloEmail author
Research Article
  • 63 Downloads

Abstract

Bisphenol A (BPA) is an endocrine-disrupting chemical widely used in the production of polycarbonate plastics and epoxy resins, which has been previously linked to diabetes among non-Hispanic populations. As part of a case control study for breast cancer, only controls with BPA information were included in this report. The final sample size comprises 70 self-reported diabetics and 334 non-diabetics. Urinary free bisphenol A (BPA-F) (μg/L) was determined by solid-phase extraction and HPLC/FLD analysis. Logistic regression models were used to evaluate the association between BPA-F and self-reported diabetes. After adjusting by age, urinary BPA-F (4.06–224.53 μg/g creatinine) was associated with diabetes exposure (OR = 1.85; 95% CI 1.04, 3.28) compared with women in the reference category (0.67–4.05 μg/g creatinine). BPA may be an environmental cofactor of diabetes. More studies are needed to confirm this result, especially in Hispanic populations.

Keywords

Diabetes Bisphenol a BPA Endocrine-disrupting chemical Mexico Women 

Notes

Acknowledgements

The authors thank Rosa María García Hernández and Guadalupe Lina García Hernández for their assistance in BPA extraction and Belen Barajas L. for literature search.

Funding information

This study was partially supported by CONACYT Fondo Sectorial de Investigación en Salud y Seguridad Social 2005-2-14373, 2009-1-111384, 2010-1-140962, PDCPN 2013-01-215464 and 272632, and the Advanced Study Grant and Gabelli Presidential Scholars Programs of Boston College.

Compliance with ethical standards

The study was approved by the ethics committee of the National Institute of Public Health of Mexico.

Conflict of interest

The authors declare they have no conflicts of interest.

References

  1. Acconcia F, Pallottini V, Marino M (2015) Molecular mechanisms of action of BPA. Dose-Response 13:1–9.  https://doi.org/10.1177/1559325815610582 CrossRefGoogle Scholar
  2. Aekplakorn W, Chailurkit LO, Ongphiphadhanakul B (2015) Relationship of serum bisphenol A with diabetes in the Thai population, National Health Examination Survey IV, 2009. J Diabetes 7:240–249.  https://doi.org/10.1111/1753-0407.12159 CrossRefGoogle Scholar
  3. Ahmadkhaniha R, Mansouri M, Yunesian M, Omidfar K, Jeddi M, Larijani B, Mesdaghinia A, Rastkari N (2014) Association of urinary bisphenol a concentration with type-2 diabetes mellitus. J Environ Health Sci Eng 12:2–7.  https://doi.org/10.1186/2052-336X-12-64 CrossRefGoogle Scholar
  4. Alonso-Magdalena P, Morimoto S, Ripoll C, Fuentes E, Nadal A (2006) The estrogenic effect of bisphenol a disrupts pancreatic β-cell function in vivo and induces insulin resistance. Environ Health Perspect 114:106–112.  https://doi.org/10.1289/ehp.8451 CrossRefGoogle Scholar
  5. Andra SS, Kalyvas H, Andrianou XD, Charisiadis P, Christophi CA, Makris KC (2015) Preliminary evidence of the association between monochlorinated bisphenol a exposure and type II diabetes mellitus: a pilot study. J Environ Sci Health A Toxic/Hazard Subst Environ Eng 50:243–259.  https://doi.org/10.1080/10934529.2015.981111 CrossRefGoogle Scholar
  6. Bansal A, Rashid C, Xin F, Li C, Polyak E, Duemler A, van der Meer T, Stefaniak M, Wajid S, Doliba N, Bartolomei MS, Simmons RA (2017) Sex- and dose-specific effects of maternal bisphenol A exposure on pancreatic islets of first- and second-generation adult mice offspring. Environ Health Perspect 125:097022.  https://doi.org/10.1289/EHP1674 CrossRefGoogle Scholar
  7. Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL (2005) Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect 113:192–200.  https://doi.org/10.1289/ehp.7337 CrossRefGoogle Scholar
  8. Barr DB, Landsittel D, Nishioka M, Thomas K, Curwin B, Raymer J, Donnelly KC, McCauley L, Ryan PB (2006) A survey of laboratory and statistical issues related to farmworker exposure studies. Environ Health Perspect 114:961–968.  https://doi.org/10.1289/ehp.8528 CrossRefGoogle Scholar
  9. Bi Y, Wang W, Xu M, Wang T, Lu J, Xu Y, Dai M, Chen Y, Zhang D, Sun W, Ding L, Chen Y, Huang X, Lin L, Qi L, Lai S, Ning G (2016) Diabetes genetic risk score modifies effect of bisphenol a exposure on deterioration in glucose metabolism. J Clin Endocrinol Metab 101:143–150.  https://doi.org/10.1210/jc.2015-3039 CrossRefGoogle Scholar
  10. Blanco-Muñoz J, Morales MM, Lacasaña M et al (2010) Exposure to organophosphate pesticides and male hormone profile in floriculturist of the state of Morelos, Mexico. Hum Reprod 25:1787–1795.  https://doi.org/10.1093/humrep/deq082 CrossRefGoogle Scholar
  11. Calafat AM, Ye X, Wong L et al (2008) Exposure of the U. S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect 116:2003–2004.  https://doi.org/10.1289/ehp.10753 Google Scholar
  12. Cantonwine D, Meeker JD, Hu H, Sánchez BN, Lamadrid-Figueroa H, Mercado-García A, Fortenberry GZ, Calafat AM, Téllez-Rojo MM (2010) Bisphenol a exposure in Mexico City and risk of prematurity : a pilot nested case control study. Environ Health 9(62):1–7.  https://doi.org/10.1186/1476-069X-9-62 Google Scholar
  13. Casey MF, Neidell M (2013) Disconcordance in statistical models of bisphenol A and chronic disease outcomes in NHANES 2003-08. PLoS One 8:1–11.  https://doi.org/10.1371/journal.pone.0079944 CrossRefGoogle Scholar
  14. Centers for Disease Control and Prevention (2017) National Diabetes Statistics Report: estimates of diabetes and its burden in the United States. Dep Health Hum Serv 1–20.  https://doi.org/10.1177/1527154408322560
  15. Corrales J, Kristofco LA, Baylor Steele W et al (2015) Global assessment of bisphenol a in the environment: review and analysis of its occurrence and bioaccumulation. Dose-Response 13:1–29.  https://doi.org/10.1177/1559325815598308 CrossRefGoogle Scholar
  16. De Meyts P, Roth J, Neville DM et al (1973) Insulin interactions with its receptors: experimental evidence for negative cooperativity. Biochem Biophys Res Commun 55:154–161.  https://doi.org/10.1016/S0006-291X(73)80072-5 CrossRefGoogle Scholar
  17. Gutiérrez JP, Rivera-Dommarco J, Shamah-Levy T, Villalpando-Hernández S, Franco A, Cuevas-Nasu L, Romero-Martínez MH-ÁM (2012) Encuesta Nacional de Salud y Nutrición 2012. Resultados Nacionales. Instituto Nacional de Salud Pública (MX), CuernavacaGoogle Scholar
  18. Hernández Ávila M, Rivera Dommarco J, Shamah Levy T, Nasu LC et al (2016) Encuesta Nacional de Salud y Nutrición de Medio Camino 2016. Informe final de resultados.  https://doi.org/10.21149/8593
  19. Hong YC, Park EY, Park MS, Ko JA, Oh SY, Kim H, Lee KH, Leem JH, Ha EH (2009) Community level exposure to chemicals and oxidative stress in adult population. Toxicol Lett 184:139–144.  https://doi.org/10.1016/j.toxlet.2008.11.001 CrossRefGoogle Scholar
  20. Hwang S, Lim J-E, Choi Y, Jee SH (2018) Bisphenol A exposure and type 2 diabetes mellitus risk: a meta-analysis. BMC Endocr Disord 18:81.  https://doi.org/10.1186/s12902-018-0310-y CrossRefGoogle Scholar
  21. Jeon JY, Ha KH, Kim DJ (2015) New risk factors for obesity and diabetes: environmental chemicals. J Diabetes Investig 6:109–111.  https://doi.org/10.1111/jdi.12318 CrossRefGoogle Scholar
  22. Junge KM, Leppert B, Jahreis S, Wissenbach DK, Feltens R, Grützmann K, Thürmann L, Bauer T, Ishaque N, Schick M, Bewerunge-Hudler M, Röder S, Bauer M, Schulz A, Borte M, Landgraf K, Körner A, Kiess W, von Bergen M, Stangl GI, Trump S, Eils R, Polte T, Lehmann I (2018) MEST mediates the impact of prenatal bisphenol A exposure on long-term body weight development. Clin Epigenetics 10:1–12.  https://doi.org/10.1186/s13148-018-0478-z CrossRefGoogle Scholar
  23. Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444:840–846.  https://doi.org/10.1038/nature05482 CrossRefGoogle Scholar
  24. Kato K, Silva MJ, Needham LL, Calafat AM (2005) Determination of 16 phthalate metabolites in urine using automated sample preparation and on-line preconcentration / high-performance liquid chromatography / tandem mass spectrometry. Anal Chem 77:2985–2991.  https://doi.org/10.1021/ac0481248 CrossRefGoogle Scholar
  25. Kim K, Park H (2013) Association between urinary concentrations of bisphenol A and type 2 diabetes in Korean adults: a population-based cross-sectional study. Int J Hyg Environ Health 216:467–471.  https://doi.org/10.1016/j.ijheh.2012.07.007 CrossRefGoogle Scholar
  26. LaKind JS, Goodman M, Naiman DQ (2012) Use of NHANES data to link chemical exposures to chronic diseases: a cautionary tale. PLoS One 7:e51086.  https://doi.org/10.1371/journal.pone.0051086 CrossRefGoogle Scholar
  27. Lang IA, Galloway TS, Scarlett A, Henley WE, Depledge M, Wallace RB, Melzer D (2008) Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA 300:1303–1310CrossRefGoogle Scholar
  28. Liao C, Kannan K (2012) Determination of free and conjugated forms of bisphenol A in human urine and serum by liquid chromatography-tandem mass spectrometry. Environ Sci Technol 46:5003–5009.  https://doi.org/10.1021/es300115a CrossRefGoogle Scholar
  29. López-Carrillo L, Hernández-Ramírez RU, Gandol AJ et al (2014) Arsenic methylation capacity is associated with breast cancer in northern Mexico. Toxicol Appl Pharmacol 280:53–59.  https://doi.org/10.1016/j.taap.2014.07.013 CrossRefGoogle Scholar
  30. Louet JF, LeMay C, Mauvais-Jarvis F (2004) Antidiabetic actions of estrogen: insight from human and genetic mouse models. Curr Atheroscler Rep 6:180–185.  https://doi.org/10.1007/s11883-004-0030-9 CrossRefGoogle Scholar
  31. Matthews JB, Twomey K, Zacharewski TR (2001) In vitro and in vivo interactions of bisphenol A and its metabolite, bisphenol A glucuronide, with estrogen receptors α and β. Chem Res Toxicol 14:149–157.  https://doi.org/10.1021/tx0001833 CrossRefGoogle Scholar
  32. Melzer D, Rice NE, Lewis C, Henley WE, Galloway TS (2010) Association of urinary bisphenol A concentration with heart disease: evidence from NHANES 2003/06. PLoS One 5:e8673.  https://doi.org/10.1371/journal.pone.0008673 CrossRefGoogle Scholar
  33. Ning G, Bi Y, Wang T, Xu M, Xu Y, Huang Y, Li M, Li X, Wang W, Chen Y, Wu Y, Hou J, Song A, Liu Y, Lai S (2011) Relationship of urinary bisphenol A concentration to risk for prevalent type 2 diabetes in Chinese adults. Ann Intern Med 155:368–374CrossRefGoogle Scholar
  34. Quirós-Alcalá L, Eskenazi B, Bradman A, Ye X, Calafat AM, Harley K (2013) Determinants of urinary bisphenol A concentrations in Mexican-American pregnant women. Environ Int 59:152–160.  https://doi.org/10.1016/j.envint.2013.05.016 CrossRefGoogle Scholar
  35. Rochester JR (2013) Bisphenol A and human health : a review of the literature. Reprod Toxicol 42:132–155.  https://doi.org/10.1016/j.reprotox.2013.08.008 CrossRefGoogle Scholar
  36. Sabanayagam C, Teppala S, Shankar A (2013) Relationship between urinary bisphenol A levels and prediabetes among subjects free of diabetes. Acta Diabetol 50:625–631.  https://doi.org/10.1007/s00592-013-0472-z CrossRefGoogle Scholar
  37. Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y, Roth J (2008) Insulin resistance and hyperinsulinemia: is hyperinsulinemia the cart or the horse? Diabetes Care 31(Suppl 2):S262–S268.  https://doi.org/10.2337/dc08-s264 CrossRefGoogle Scholar
  38. Shankar A, Teppala S (2011) Relationship between urinary bisphenol A levels and diabetes mellitus. J Clin Endocrinol Metab 96:3822–3826.  https://doi.org/10.1210/jc.2011-1682 CrossRefGoogle Scholar
  39. Shu X, Tang S, Peng C, Gao R, Yang S, Luo T, Cheng Q, Wang Y, Wang Z, Zhen Q, Hu J, Li Q (2018) Bisphenol A is not associated with a 5-year incidence of type 2 diabetes: a prospective nested case–control study. Acta Diabetol 55:369–375.  https://doi.org/10.1007/s00592-018-1104-4 CrossRefGoogle Scholar
  40. Silver MK, O’Neill MS, Sowers MFR, Park SK (2011) Urinary bisphenol A and type-2 diabetes in U.S. adults: data from NHANES 2003-2008. PLoS One 6:e26868.  https://doi.org/10.1371/journal.pone.0026868 CrossRefGoogle Scholar
  41. Soto-Estrada G, Moreno Altamirano L, García-García JJ, Ochoa Moreno I, Silberman M (2018) Trends in frequency of type 2 diabetes in Mexico and its relationship to dietary patterns and contextual factors. Gac Sanit 32:283–290.  https://doi.org/10.1016/j.gaceta.2017.08.001 CrossRefGoogle Scholar
  42. Sun Q, Cornelis MC, Townsend MK, Tobias DK, Eliassen AH, Franke AA, Hauser R, Hu FB (2014) Association of urinary concentrations of bisphenol A and phthalate metabolites with risk of type 2 diabetes: a prospective investigation in the nurses’ health study (NHS) and NHSII cohorts. Environ Health Perspect 122:616–623.  https://doi.org/10.1289/ehp.1307201 CrossRefGoogle Scholar
  43. Tai X, Chen Y (2016) Urinary bisphenol A concentrations positively associated with glycated hemoglobin and other indicators of diabetes in Canadian men. Environ Res 147:172–178.  https://doi.org/10.1016/j.envres.2016.02.006 CrossRefGoogle Scholar
  44. Tapia-Conyer R, Gutiérrez G, Sepúlveda J (1992) Methodology of the National Seroepidemiologic Survey, Mexico. Salud Pública Mex 34:124–135Google Scholar
  45. Townsend MK, Franke AA, Li X, Hu FB, Eliassen AH (2013) Within-person reproducibility of urinary bisphenol A and phthalate metabolites over a 1 to 3 year period among women in the nurses ’ health studies : a prospective cohort study. Environ Health 12:1–9.  https://doi.org/10.1186/1476-069X-12-80 CrossRefGoogle Scholar
  46. Wang T, Li M, Chen B, Xu M, Xu Y, Huang Y, Lu J, Chen Y, Wang W, Li X, Liu Y, Bi Y, Lai S, Ning G (2012) Urinary bisphenol A (BPA) concentration associates with obesity and insulin resistance. J Clin Endocrinol Metab 97:223–227.  https://doi.org/10.1210/jc.2011-1989 CrossRefGoogle Scholar
  47. Wolstenholme JT, Rissman EF, Connelly JJ (2011) The role of bisphenol in shaping the brain, epigenome and behavior. Horm Behav 59:296–305.  https://doi.org/10.1016/j.yhbeh.2010.10.001 CrossRefGoogle Scholar
  48. World Health Organization (2016) Global report on diabetes executive summary. WHO 1–4. ISBN 9789241565257Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Luke Murphy
    • 1
    • 2
  • Ángel Mérida-Ortega
    • 1
  • Mariano E. Cebrián
    • 3
  • Lucia Hernández-Garciadiego
    • 4
  • Humberto Gómez-Ruiz
    • 4
  • Brenda Gamboa-Loira
    • 1
  • Lizbeth López-Carrillo
    • 1
    • 5
    Email author
  1. 1.Center for Research in Population HealthNational Institute of Public HealthCuernavacaMexico
  2. 2.Department of BiologyBoston CollegeChestnut HillUSA
  3. 3.Department of ToxicologyCINVESTAVMexico CityMexico
  4. 4.Department of Analytical ChemistryNational Autonomous University of MexicoMexico CityMexico
  5. 5.Instituto Nacional de Salud PúblicaCuernavacaMexico

Personalised recommendations