Advertisement

Use of alternating current for colored water purification by anodic oxidation with SS/PbO2 and Pb/PbO2 electrodes

  • Amina OthmaniEmail author
  • Aida Kesraoui
  • Hanene Akrout
  • Montserrat López-Mesas
  • Mongi Seffen
  • Manuel Valiente
Research Article
  • 25 Downloads

Abstract

This paper suggests a new alternative for the acceleration of dye removal by adopting alternating current instead of direct current in the treatment of methylene blue solutions and industrials effluents, using anodic oxidation on Pb/PbO2 and stainless steel (SS)/PbO2 anodes. A comparative study of the influence of electrolyte support (NaCl, NaNO3, and Na2SO4) on the anodic oxidation performance and the anode stability was performed. The best results were obtained in presence of NaCl where the color removal percentage reached about 80.13% and 55.8%, for Pb/PbO2 anodes, and 89.5% and 60.4% for the SS/PbO2 anodes for alternating and direct current, respectively. Treatment in alternating current conditions enhanced the removal speed. Atomic absorption analysis confirmed the decrease of the release of (Pb2+) ions to much lower values compared with direct current and to those allowed by the Standards. LC/MS and phytotoxicity analyses confirmed the non-toxicity of the generated by-products during the anodic oxidation of methylene blue and the possibility of the reuse of the treated water.

Keywords

Anodic oxidation Alternating current Direct current, Pb/PbO2 SS/PbO2 

Notes

Acknowledgments

The authors are particularly grateful for the Laboratory of Wastewaters and Environment located in the Center of water researches and technologies, CERTE Borj Cedria (Tunisia) and the Centre Grup de Técniques de Separació en Química (GTS) of Universitat Autónoma de Barcelona (UAB, Spain).

Special regards are also due to Pr. Kamel MAALOUL, translator and English language proofreading expert, for his valuable help with proofreading and language polishing of the manuscript.

Funding information

The study was financially supported by the Laboratory of Energy and Materials (High School of Sciences and Technology of Hammam Sousse, Tunisia).

References

  1. Abu Ghalwa N, Hamada M, Abu Shawish HM, Shubair O (2011) Electrochemical degradation of linuron in aqueous solution using Pb/PbO2 and C/PbO2 electrodes. Arab J Chem 9:S821–S828.  https://doi.org/10.1016/j.arabjc.2011.08.006 CrossRefGoogle Scholar
  2. Akrout H, Jellali S, Bousselmi L (2015) Enhancement of methylene blue removal by anodic oxidation using BDD electrode combined with adsorption onto sawdust. C R Chim 18:110–120.  https://doi.org/10.1016/j.crci.2014.09.006 CrossRefGoogle Scholar
  3. Ali A, Shaikh IA, Abid T, Samina F, Islam S, Khalid A, Firdous N, Javed MT (2019) Reuse of textile wastewater after treating with combined process of chemical coagulation and electrocoagulation. Pol J Environ Stud 28:1–6.  https://doi.org/10.15244/pjoes/91940 Google Scholar
  4. Alonso JJS, Nenna El Kori N, Melián-Martel N, Del Río-Gamero B (2018) Removal of ciprofloxacin from seawater by reverse osmosis. J Environ Manag 217:337–345.  https://doi.org/10.1016/j.jenvman.2018.03.108 CrossRefGoogle Scholar
  5. Azzaz AA, Jellai S, Akrout H, Assadi AA, Bousselmi L (2018) Dynamic investigations on cationic dye desorption from chemically modified lignocellulosic material using a low-cost eluent: dye recovery and anodic oxidation efficiencies of the desorbed solutions. JCLP 201:28–38.  https://doi.org/10.1016/j.jclepro.2018.08.023 Google Scholar
  6. Barros WRP, Steter JR, Lanza MRV, Motheo AJ (2014) Degradation of armanth dye in alkaline medium by ultrasonic cavitation coupled with electrochemical oxidation using a boron–doped diamond anode. Electrochim Acta 143:180–187.  https://doi.org/10.1016/j.electacta.2014.07.141 CrossRefGoogle Scholar
  7. Bilińska L, Blus K, Gmurek M, Ledakowicz S (2019) Brine recycling from industrial textile wastewater treated by ozone. By-products accumulation. Part 1: multi recycling loop. Water 11:460.  https://doi.org/10.3390/w11030460 CrossRefGoogle Scholar
  8. Colombo A, Nivaldo Módenes A, Estelita Góes Trigueros D, Isabelly Giordani da Costa S, Henrique Borba F, Rodolfo Espinoza-Quiñones F (2019) Treatment of sanitary landfill leachate by the combination of photo-Fenton and biological processes. J Clean Prod 214:145–153.  https://doi.org/10.1016/j.jclepro.2018.12.310 CrossRefGoogle Scholar
  9. Cordier C, Charpin L, Stavrakakis C, Papin M, Guyomard K, Sauvade P, Coelho F, Moulin P (2019) Ultrafiltration: a solution to recycle the breeding waters in shellfish production. Aquaculture 504:30–38.  https://doi.org/10.1016/j.aquaculture.2019.01.045 CrossRefGoogle Scholar
  10. Dai Q, Zhou J, Meng X, Feng D, Wu C, Chen J (2016) Electrochemical oxidation of cinnamic acid with Mo modified PbO2 electrode: electrode characterization, kinetics and degradation pathway. Chem Eng J 289:239–246.  https://doi.org/10.1016/j.cej.2015.12.054 CrossRefGoogle Scholar
  11. De Souza Renata BA, Ruotolo LAM (2013) Phenol electrooxidation in different supporting electrolytes using boron-doped diamond anodes. Int J Electrochem Sci 8:643–657Google Scholar
  12. Devilliers D, DinhThi MYT, Mahé V, Lequeux DN (2004) Electroanalytical investigations on electrodeposited lead dioxide. J Electronal Chen 573:227–239.  https://doi.org/10.1016/j.jelechem.2004.07.008 CrossRefGoogle Scholar
  13. Duan X, Ma F, Yuan Z, Jin X, Chang L (2013) Electrochemical degradation of phenol in aqueous solution using PbO2 anode. J Taiwan Inst Chem Eng 44:95–102.  https://doi.org/10.1016/j.jtice.2012.08.009 CrossRefGoogle Scholar
  14. Egan DRP, Low CTJ, Walsh FC (2011) Electrodeposited nanostructured lead dioxide as a thin film electrode for a lightweihht lead-acid battery. J Power Sources 196:5725–5730.  https://doi.org/10.1016/j.jpowsour.2011.01.008 CrossRefGoogle Scholar
  15. Elaissaoui I, Akrout H, Grassini S, Fulginiti D, Bousselmi L (2016a) Role of SiOx interlayer in the electrochemical degradation of Amaranth dye using SS/PbO2 anodes. Mater Des 10:633–643.  https://doi.org/10.1016/j.matdes.2016.08.044 CrossRefGoogle Scholar
  16. Elaissaoui I, Akrout H, Bousselmi L (2016b) Electrochemical degradation of dye on lead dioxide electrodeposited on stainless steel: effect of cyclic voltammetry parameters. Desalin Water Treat 57:1944–3994.  https://doi.org/10.1080/19443994.2015.1131633 Google Scholar
  17. Elaissaoui I, Akrout H, Grassini S, Fulginiti D, Bousselmi L (2018) Effect of coating method on the structure and properties of a novel PbO2 anode for electrochemical oxidation of Amaranth dye. Chemosphere. 217:26–34.  https://doi.org/10.1016/j.chemosphere.2018.10.161 CrossRefGoogle Scholar
  18. El-Ghenymy A, Centellas F, Rodríguez RM, Cabot PL, Garrido JA, Sirés I, Brillas E (2015) Comparative use of anodic oxidation, electro-Fenton and photoelectro-Fenton with Pt or boron-doped diamond anode to decolorize and mineralize Malachite Green oxalate dye. Electrochim Acta 182: 247–256.  https://doi.org/10.1016/j.electacta.2015.09.078
  19. Ghaly A, Ananthashankar R, Alhattab M, Ramakrishnan V (2013) Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Technol 5:1–19.  https://doi.org/10.4172/2157-7048.1000182 Google Scholar
  20. Guerra E, Llompart MI, −Jares CG (2018) Analysis of dyes in cosmetics: challenges and recent developments. Cosmetics MDPI5:47.  https://doi.org/10.3390/cosmetics5030047 CrossRefGoogle Scholar
  21. Guzmán-Duque FL, Palma-Goyes RE, González I, Pe˜nuela G, Torres-Palma RA (2014) Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water. J Hazard Mater 278:221–226.  https://doi.org/10.1016/j.jhazmat.2014.05.076 CrossRefGoogle Scholar
  22. Hammami S (2008) Etude de dégradation des colorants de textile par les procédés d’oxydation avancée : application à la dépollution des rejets industriels. Thèse de doctorat, Université Tunis El Manar. TunisieGoogle Scholar
  23. Hamza M, Abdelhedi R, Brillas E, Sirés I (2009) Comparative electrochemical degradation of the triphenylmethane dye Methyl Violet with boron-doped diamond and Pt anodes. J Electroanal Chem 627:41–50.  https://doi.org/10.1016/j.jelechem.2008.12.017 CrossRefGoogle Scholar
  24. Hao X, Dan S, Qian Z, Honghui Y, Yan W (2014) Preparation and characterization of PbO2electrodes from electro-deposition solutions with different copper concentration. RSC 4:25011–25017.  https://doi.org/10.1039/c4ra03235g Google Scholar
  25. Holzwarth U Gibson N (2011) The Scherrer equation versus the ‘Debye–Scherrer equation, Nature Nanotechnology -6- SeptemberGoogle Scholar
  26. Kallel S, Trabelsi N, Abdelhedi BTR (2004) Electrochemical behavior of caffeic acid. Electrochim Acta 49:1647–1654.  https://doi.org/10.1016/j.electacta.2003.11.026 CrossRefGoogle Scholar
  27. Kesraoui A, Moussa A, Ben Ali G, Seffen M (2016a) Biosorption of alpacide blue from aqueous solution, by lignocellulosic biomass: Luffa cylindrica fibers. Environ Sci Pollut Res 23:15832–15840.  https://doi.org/10.1007/s11356-015-5262-4 CrossRefGoogle Scholar
  28. Kesraoui A, Selmi T, Seffen M, Brouers (2016b) Influence of alternating current on the adsorption of indigo carmine. Environ Sci Pollut Res 11:9940–9950.  https://doi.org/10.1007/s11356-016-7201-4 Google Scholar
  29. Kesraoui A, Bouzaabia S, Seffen M (2018) The combination of Luffa cylindrical fibers and metal oxides offers a highly performing hybrid fiber material in water decontamination. Environ Sci Pollut Res 26:11524–11534.  https://doi.org/10.1007/s11356-018-1507-3 CrossRefGoogle Scholar
  30. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70.  https://doi.org/10.1016/j.cropro.2012.01.007 CrossRefGoogle Scholar
  31. Labiadh L, Barbucci A, Carpanese MP, Gadri A, Ammar S, Panizza M (2017) Direct and indirect electrochemical oxidation of Indigo Carmine using PbO2 and Ti Ru SnO2. J Solid State Electrochem 21:2167–2175.  https://doi.org/10.1007/s10008-017-3559-6 CrossRefGoogle Scholar
  32. Li H, Chen Y, Zhang Y, Han W, Sun X, Li J, Wang L (2013) Preparation of Ti/PbO2-Sn anodes for electrochemical degradation of phenol. J Electroanal Chem 689:193–200.  https://doi.org/10.1016/j.jelechem.2012.11.035 CrossRefGoogle Scholar
  33. Louhichi G, Bousselmi L, Ghrabi A, Khouni I (2018) Process optimization via response surface methodologyin the physico-chemical treatment of vegetable oil refinery wastewater. Environ Sci Pollut Res 1-19.  https://doi.org/10.1007/s11356-018-2657-z
  34. Martinez- Huitle CA, Brilllas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemicalmethods: a general review. Appl Catal B 87:105–114.  https://doi.org/10.1016/j.apcatb.2008.09.017 CrossRefGoogle Scholar
  35. Mohammadi N, Yari M, Allahkaram SR (2013) Characterization of PbO2 coating electrodeposited onto stainless steel 316L substrate for using as PEMFC's bipolar plates. Surf Coat Technol 236:341–346.  https://doi.org/10.1016/j.surfcoat.2013.10.010 CrossRefGoogle Scholar
  36. Moncada A, Mistretta MC, Randazzo S, Piazza S, Sunseri C, Inguanta R (2014) High-performance of PbO2 nanowire electrodes for lead-acid battery. J Power Sources 256:72–79.  https://doi.org/10.1016/j.jpowsour.2014.01.050 CrossRefGoogle Scholar
  37. Mook WT, Aroua MK, Chakrabarti MH, Low CTJ, Aravind PV, Brandon NP (2013) The application of nano-crystalline PbO2 as an anode for the simultaneous bio-electrochemical denitrification and organic matter removal in an up-flow undivided reactor. Electrochim Acta 94:327–335.  https://doi.org/10.1016/j.electacta.2013.02.001 CrossRefGoogle Scholar
  38. Moura DC, Quiroz MA, Silva DR, Salazar R, Alberto C, Huitle M (2016) Electrochemical degradation of Acid Blue 113 dye using TiO2-nanotubes decorated with PbO2 as anode. Environ Nanotechnol Monit Manag 5:13–20.  https://doi.org/10.1016/j.enmm.2015.11.001 CrossRefGoogle Scholar
  39. Naim NN, Kuwata M, Kamiya H, Lenggoro IW (2009) Deposition of TiO2 nanoparticles in surfactant-containing aqueous suspension by a pulsed DC charging-mode electrophoresis. J Ceram Soc Jpn 117:127–132.  https://doi.org/10.2109/jcersj2.117.127 CrossRefGoogle Scholar
  40. Olesya VR, Ivan YS (2011) Electrochemical method of discharged waters cleaning with of alternating current. J Siberian Federal Univ Eng Technol 3:348–355Google Scholar
  41. Omata T, Kita M, Otsuka-Yao-Matsuo S, Katada M (2005) Characterization of novel cation-ordered compounds with fluorite and α-PbO2 related structures prepared by oxidation of Sn–Nb–O pyrochlore. J Phys Chem Solids 66:53–62.  https://doi.org/10.1016/j.jpcs.2004.08.031 CrossRefGoogle Scholar
  42. Othmani A, Kesraoui, Seffen M (2017) The alternating and direct current effect on the elimination of cationic and anionic dye from aqueous solutions by electrocoagulation and coagulation flocculation. Euro Mediterr J Environ Integration 2:1–12.  https://doi.org/10.1007/s41207-017-0016-y CrossRefGoogle Scholar
  43. Pan K, Tian M, Jiang ZH, Kjartanson B, Chen A (2012) Electrochemical oxidation of lignin at lead dioxide nanoparticles photoelectrodeposited on TiO2 nanotube arrays. Electrochim Acta 60:147–153.  https://doi.org/10.1016/j.electacta.2011.11.025 CrossRefGoogle Scholar
  44. Panizza M, Martinez-Huitle CA (2013) Role of electrode materials for the anodic oxidation of a real landfill leachate, comparison between Ti–Ru–Sn ternary oxide, PbO2 and boron-doped diamond anode. Chemosphere. 90:1455–1460.  https://doi.org/10.1016/j.chemosphere.2012.09.006 CrossRefGoogle Scholar
  45. Pavlov D, Papazov G (1976) Dependence of the properties of the lead-acid battery positive plate paste on the processes occurring during its production. J Appl Electrochem 6:339–345.  https://doi.org/10.1007/BF00608919 CrossRefGoogle Scholar
  46. Rada S, Rus L, Rada M, Culea E, Aldea N (2015) Synthetisis,structure ,optical and electrochemical properties of the lead sulfate-lead dioxide-lead glasses and vitroceramics. Solid State Ionics 275:111–118.  https://doi.org/10.1016/j.ssi.2015.03.016 CrossRefGoogle Scholar
  47. Rauf MA, Meetani A, Khaleel A, Ahmed (2010) Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS, Chem Eng J 157:373–378.  https://doi.org/10.1016/j.cej.2009.11.017
  48. Rufino ECG, Santana MHP, De Faria LA, Da Silva LM (2010) Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen–ozone evolution reactions. Chem Pap 64:749–757.  https://doi.org/10.2478/s11696-010-0062-2 CrossRefGoogle Scholar
  49. Selmi T, Seffen M, Sammouda H, Mathieu S, Jagiello J, Celzard A, Fierro V (2017) Physical meaning of the parameters used in fractal kinetic and generalised adsorption models of Brouers–Sotolongo. Adsorpt. 24:11–27.  https://doi.org/10.1007/s10450-017-9927-9 CrossRefGoogle Scholar
  50. Sharma A, Bhattacharya S, Sen R, Reddy BSB, Fecht HJ, Das K, Das S (2012) Influence of current density on microstructure of pulse electrodeposited tin coatings. Mater Charact 68:22–32.  https://doi.org/10.1016/j.matchar.2012.03.002 CrossRefGoogle Scholar
  51. Shul’gin LP, Kosyakov AL, Kochetkova RD, Petra VI (1975) Inventor’s certificate N°529124. In: Byull.IzobretGoogle Scholar
  52. Song Y, Wei G, Xiong R (2007) Structure and properties of PbO2–CeO2 anodes on stainless steel. Electrochim Acta 52:7022–7027.  https://doi.org/10.1016/j.electacta.2007.05.024 CrossRefGoogle Scholar
  53. Tamer E, Hamid Z, Aly AM, Ossama ET, Bo M, Benoit G (2006) Sequential UV biological degradation of chlorophenols. Chemosphere. 63:277–284.  https://doi.org/10.1016/j.chemosphere.2005.07.022 CrossRefGoogle Scholar
  54. Trabelsi H (2014) Etude de la dégradabilité et de la toxicité des colorants par ozonation et photocatalyse. Thèse de doctorat. Université de Monastir. TunisieGoogle Scholar
  55. Venkatalesh S, Der-Tau C (1979) The alternating current electrode processes. Israel J Chem 18:56–64.  https://doi.org/10.1002/ijch.197900006 CrossRefGoogle Scholar
  56. Vuppaladadiyama AK, Merayob N, Blancob A, Houc J, Dionysioud DD, Zhaoa M (2018) Simulation study on comparison of algal treatment to conventional biological processes for greywater treatment. Algal Res 35:106–114.  https://doi.org/10.1016/j.algal.2018.08.021 CrossRefGoogle Scholar
  57. Wu X, Xu H, Lu L, Zhao H, Fu J, Shen Y, Xu P, Dong Y (2014) PbO2-modified graphite felt as the positive electrode for an all-vanadium redox flow battery. J Power Sources 250:274–278.  https://doi.org/10.1016/j.jpowsour.2013.11.021 CrossRefGoogle Scholar
  58. Yang CJ, Park SM (2013) Electrochemical behavior of PbO2 nanowires array anodes in a zinc electrowinning solution. Electrochim Acta 108:86–94.  https://doi.org/10.1016/j.electacta.2013.06.068 CrossRefGoogle Scholar
  59. Yao Y, Zhao C, Zhao M, Wang X (2013) Electrocatalytic degradation of methylene blue on PbO2-ZrO2 nanocomposite electrodes prepared by pulse electrodeposition. J Hazard Mater 263:726–734.  https://doi.org/10.1016/j.jhazmat.2013.10.038 CrossRefGoogle Scholar
  60. Zhenkun W, Liyi L, Ziyin L, Bo S, Zhuo L, Kyoung-Sik M, Ching-Ping W, Shu-Lin B (2015) Alternating current line-filter based on electrochemical capacitor utilizing template-patterned graphene. Sci Rep 5:10983.  https://doi.org/10.1038/srep10983 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Amina Othmani
    • 1
    • 2
    Email author
  • Aida Kesraoui
    • 1
  • Hanene Akrout
    • 3
  • Montserrat López-Mesas
    • 4
  • Mongi Seffen
    • 1
  • Manuel Valiente
    • 4
  1. 1.Laboratory of Energy and Materials (LabEM): LR11ES34, Higher School of Science and Technology of Hammam SousseUniversity of SousseSousseTunisia
  2. 2.Faculty of Sciences of MonastirMonastir UniversityMonastirTunisia
  3. 3.Laboratory of Wastewaters and EnvironmentCenter of Water Researches and Technologies (CERTE)SolimanTunisia
  4. 4.Centre Grup de Técniques de Separació, en Química (GTS), Unitat de Química Analítica, Departament de Química, Facultat de CiènciesUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations