Impact of ZnO nanoparticles on Cd toxicity and bioaccumulation in rice (Oryza sativa L.)

  • Wei Zhang
  • Jinghua Long
  • Jie Li
  • Meng Zhang
  • Guoliang Xiao
  • Xingyin Ye
  • Wenjing Chang
  • Hui ZengEmail author
Research Article


With the widespread use of metal oxide nanoparticles (MNPs), agricultural soil is gradually becoming a primary sink for MNPs. The effect of these nanoparticles on the fate and the toxicity of co-existing heavy metals is largely unknown. In this paper, pot experiments were conducted to evaluate the impact of ZnO nanoparticles (ZnO-NPs) on Cd toxicity and bioaccumulation in a soil-rice system. Different amounts of ZnO-NPs were added to three different levels of Cd-contaminated paddy soil (L-Cd, 1.0 mg kg−1; M-Cd, 2.5 mg kg−1; H-Cd, 5.0 mg kg−1). The results showed that the addition of ZnO-NPs significantly increased the soil pH value, and the soil pH value increased with the increase in ZnO-NP concentration. Reductions in plant height and biomass under Cd stress were recovered and increased after the addition of ZnO-NPs; the addition of ZnO-NP promoted rice biomass increased by 13~22% and 25~43% in the M-Cd and H-Cd groups, respectively, compared with that of the respective control treatment. A high concentration of ZnO-NPs could increase the concentration of bioavailable Cd in rhizosphere soil. In the L-Cd group, the Cd concentration of the rice in the L-Z500 treatment increased to 0.51 mg kg−1, exceeding the limit for acceptable Cd concentrations in rice of China (0.2 mg kg−1). This work revealed that ZnO-NPs could improve plant growth, especially in the early-growth stage, and alleviate the toxic effects of Cd. However, the addition of high-concentration (500 mg kg−1) ZnO-NPs in the lower Cd pollution soil could significantly facilitate the accumulation of Cd by Oryza sativa L.


ZnO nanoparticles Cd Bioaccumulation Migration Bioavailability 


Funding information

This study is financially supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (31621091) and the General Financial Grant from the China Postdoctoral Science Foundation (2017M620504).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ali B, Gill RA, Yang S, Gill MB, Ali S, Rafiq MT, Zhou W (2014a) Hydrogen sulfide alleviates cadmium-induced morpho-physiological and ultrastructural changes in Brassica napus. Ecotoxicol Environ Saf 110:197–207CrossRefGoogle Scholar
  2. Ali B, Qian P, Jin R, Ali S, Zhou W (2014b) Physiological and ultra-structural changes in Brassica napus seedlings induced by cadmium stress. Biol Plant 58(1):131–138CrossRefGoogle Scholar
  3. Ali B, Gill RA, Yang S, Gill MB, Farooq MA, Liu D, Daud MK, Ali S, Zhou W (2015) Regulation of cadmium-induced proteomic and metabolic changes by 5-aminolevulinic acid in leaves of Brassica napus L. PLoS One 10(4):e0123328CrossRefGoogle Scholar
  4. Allen SE (1989) Chemical analysis of ecological materials, 2nd edn. Blackwell Scientific Publications, OxfordGoogle Scholar
  5. Cai F, Wu X, Zhang H, Shen X, Zhang M, Chen W, Gao Q, White JC, Tao S, Wang X (2017) Impact of TiO2 nanoparticles on lead uptake and bioaccumulation in rice (Oryza sativa L.). NanoImpact 5:101–108CrossRefGoogle Scholar
  6. Chai M, Shi F, Li R, Liu L, Liu Y, Liu F (2013) Interactive effects of cadmium and carbon nanotubes on the growth and metal accumulation in a halophyte spartina alterniflora, (Poaceae). Plant Growth Regul 71(2):171–179CrossRefGoogle Scholar
  7. De OVH, Mark T (2018) Tolerance, toxicity and transport of Cd and Zn in Populus trichocarpa. Environ Exp Bot 155:281–292CrossRefGoogle Scholar
  8. Deng Y, Eitzer B, White JC, Xing B (2017) Impact of multiwall carbon nanotubes on the accumulation and distribution of carbamazepine in collard greens (Brassica oleracea). Environ Sci Nano 4:149–159CrossRefGoogle Scholar
  9. Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13(4):822–828CrossRefGoogle Scholar
  10. Fan X, Wang P, Wang C, Hu B, Wang X (2017) Lead accumulation (adsorption and absorption) by the freshwater bivalve corbicula fluminea in sediments contaminated by TiO2 nanoparticles. Environ Pollut 231(Pt 1):712–721CrossRefGoogle Scholar
  11. Gao Y, Yang T, Jin J (2015) Nanoparticle pollution and associated increasing potential risks on environment and human health: a case study of China. Environ Sci Pollut Res 22:19297–19306CrossRefGoogle Scholar
  12. Garg N, Kaur H (2013) Impact of cadmium-zinc interactions on metal uptake, translocation and yield in pigeonpea genotypes colonized by arbuscular mycorrhizal fungi. J Plant Nutr 36(1):67–90CrossRefGoogle Scholar
  13. Glomstad B, Altin D, Sørensen L, Liu J, Jenssen BM, Booth AM (2016) Carbon nanotube properties influence adsorption of phenanthrene and subsequent bioavailability and toxicity to Pseudokirchneriella subcapitata. Environ Sci Technol 50:2660–2668CrossRefGoogle Scholar
  14. Hu X, Kang J, Lu K, Zhou R, Mu L, Zhou Q (2014) Graphene oxide amplifies the phytotoxicity of arsenic in wheat. Sci Rep 4:6122CrossRefGoogle Scholar
  15. Ji Y, Zhou Y, Ma C, Feng Y, Hao Y, Rui Y et al (2017) Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiol Biochem 110:82–93CrossRefGoogle Scholar
  16. Kutrowska A, Malecka A, Piechalak A, Masiakowski W, Hanc A, Baralkiewicz D et al (2017) Effects of binary metal combinations on zinc, copper, cadmium and lead uptake and distribution in Brassica juncea. J Trace Elem Med Biol 44:32–39CrossRefGoogle Scholar
  17. Laycock AJ, Romero-Freire A, Najorka J, Svendsen C, Van Gestel CAM, Rehkaemper M (2017) A novel multi-isotope tracer approach to test ZnO nanoparticle and soluble Zn bioavailability in joint soil exposures. Environ Sci Technol 51(21):12756–12763CrossRefGoogle Scholar
  18. Li M, Luo Z, Yan Y, Wang Z, Chi Q, Yan C, Xing B (2016) Arsenate accumulation, distribution, and toxicity associated with titanium dioxide nanoparticles in daphnia magna. Environ Sci Technol 50(17):9636–9643CrossRefGoogle Scholar
  19. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250CrossRefGoogle Scholar
  20. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42(15):5580–5585CrossRefGoogle Scholar
  21. López-moreno ML, Rosa GDL, Hernándezviezcas JÁ, Castillomichel H, Botez CE, Peraltavidea JR et al (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320CrossRefGoogle Scholar
  22. Ma C, Liu H, Chen G, Zhao Q, Eitzer B, Wang Z, Cai W, Newman LA, White JC, Dhankher OP, Xing B (2017) Effects of titanium oxide nanoparticles on tetracycline accumulation and toxicity in Oryza sativa (L.). Environ Sci Nano 4:1827–1839CrossRefGoogle Scholar
  23. Mo LY, Zhao DN, Qin M, Qin LT, Zeng HH, Liang YP (2017) Joint toxicity of six common heavy metals to Chlorella pyrenoidosa. Environ Sci Pollut Res 5:1–7Google Scholar
  24. Mountouris A, Voutsas E, Tassios D (2002) Bioconcentration of heavy metals in aquatic environments: the importance of bioavailability. Mar Pollut Bull 44(10):1136–1141CrossRefGoogle Scholar
  25. Najeeb U, Jilani G, Ali S, Sarwar M, Xu L, Zhou WJ (2011) Insight into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. J Hazard Mater 186:565–574CrossRefGoogle Scholar
  26. Nwugo CC, Huerta AJ (2008) Effects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice (Oryza sativa L.) seedlings exposed to long-term low level cadmium. Plant Soil 311:73–86CrossRefGoogle Scholar
  27. Peng C, Duan D, Xu C, Chen Y, Sun L, Zhang H, Yuan X, Zheng L, Yang Y, Yang J, Zhen X, Chen Y, Shi J (2015) Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environ Pollut 197:99–107CrossRefGoogle Scholar
  28. Peng C, Xu C, Liu Q, Sun L, Luo Y, Shi J (2017) Fate and transformation of CuO nanoparticles in the soil-rice system during the life cycle of rice plants. Environ Sci Technol 51(9):4907–4917CrossRefGoogle Scholar
  29. Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548CrossRefGoogle Scholar
  30. Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K et al (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. PNAS 109(37):14734–14735CrossRefGoogle Scholar
  31. Rauret G, López-Sánchez JF, Sahuquillo A, Rubio R, Davidson CM, Ure AM, Quevauviller P (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit 1:57–61CrossRefGoogle Scholar
  32. Shah K, Dubey K (1995) Effect of cadmium on RNA level as well as activity and molecular forms of ribonuclease in growing rice seedlings. Plant Physiol Biochem 3:577–584Google Scholar
  33. Shi J, Peng C, Yang Y, Yang J, Zhang H, Yuan X, Chen Y, Hu T (2014) Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Nanotoxicology 8:179–188CrossRefGoogle Scholar
  34. Singh J, Lee BK (2016) Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): a possible mechanism for the removal of Cd from the contaminated soil. J Environ Manag 170:88–96CrossRefGoogle Scholar
  35. Vasiliadou S, Dordas C (2009) Increased concentration of soil cadmium affects on plant growth, dry matter accumulation, Cd, and Zn uptake of different tobacco cultivars (Nicotiana tabacum L.). Int J Phytoremediation 11(2):115–130CrossRefGoogle Scholar
  36. Wang P, Menzies NW, Lombi E, Mckenna BA, Johannessen B, Glover CJ, Kappen P, Kopittke PM (2013) Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). Environ Sci Technol 47(23):13822–13830CrossRefGoogle Scholar
  37. Wang Y, Zhu X, Lao Y, Lv X, Tao Y, Huang B, Wang J, Zhou J, Cai Z (2016) TiO2 nanoparticles in the marine environment: physical effects responsible for the toxicity on algae Phaeodactylum tricornutum. Sci Total Environ 565:818–826CrossRefGoogle Scholar
  38. Xu C, Peng C, Sun L, Zhang S, Huang H, Chen Y, Shi J (2015) Distinctive effects of TiO2, and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol Biochem 86:24–33CrossRefGoogle Scholar
  39. Yang K, Xing B (2010) Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chem Rev 110(10):5989–6008CrossRefGoogle Scholar
  40. Ye XY, Zhang W, Long JH, Chang WJ, Zeng H (2018) Impact of engineered nanoparticles on Cd chemical speciation and bioavailability in paddy soil. Chin J Environ Eng 12:3426–3432Google Scholar
  41. Zhang M, Liu XC, Yuan LY, Wu KQ, Duan J, Wang XL, Yang LX (2012) Transcriptional profiling in Cd-treated rice seedling roots using suppressive subtractive hybridization. Plant Physiol Biochem 50:79–86CrossRefGoogle Scholar
  42. Zhang R, Zhang H, Tu C, Hu X, Li L, Luo Y, Christie P (2015) Phytotoxicity of ZnO nanoparticles and the released Zn (ii) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environ Sci Pollut Res 22(14):11109–11117CrossRefGoogle Scholar
  43. Zhang W, Alakangas L, Wei Z, Long J (2016) Geochemical evaluation of heavy metal migration in Pb-Zn tailings covered by different topsoils. J Geochem Explor 165:134–142CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wei Zhang
    • 1
  • Jinghua Long
    • 2
  • Jie Li
    • 3
  • Meng Zhang
    • 1
  • Guoliang Xiao
    • 1
  • Xingyin Ye
    • 1
  • Wenjing Chang
    • 1
  • Hui Zeng
    • 1
    • 4
    Email author
  1. 1.School of Urban Planning and DesignPeking University Shenzhen Graduate SchoolShenzhenChina
  2. 2.School of Public AdministrationHebei University of Economics and BusinessShijiazhuangChina
  3. 3.College of Land and EnvironmentShenyang Agricultural UniversityShenyangChina
  4. 4.School of Urban and Environmental SciencesPeking UniversityBeijingChina

Personalised recommendations