Advertisement

Effects of ecologically relevant concentrations of Boral® 500 SC, Glifosato® Biocarb, and a blend of both herbicides on markers of metabolism, stress, and nutritional condition factors in bullfrog tadpoles

  • Anike L. L. Wilkens
  • Artur A. N. Valgas
  • Guendalina T. OliveiraEmail author
Research Article
  • 54 Downloads

Abstract

The aim of this study was to verify the effects of the isolated forms of Boral® SC 500, Glifosato® Biocarb herbicides, and a blend of both herbicides on metabolism and oxidative balance markers of Rana catesbeiana tadpoles and on their nutritional condition. Groups of tadpoles were divided into different treatments: control (no herbicides), Boral® 500 SC (sulfentrazone: 130 μg/L), Glifosato® Biocarb (glyphosate: 234 μg/L), and a blend of both herbicides. After 7 days, the liver, caudal muscle, and blood samples were taken to subsequently perform the biomarkers determination by spectrophotometry. The intestinal condition factor increased in animals exposed to glyphosate and herbicide blends, suggesting a hyperphagic effect. This hypothesis was confirmed by the rise of triglycerides and circulating very low–density lipoprotein (VLDL). There was a significant increase in the levels of uric acid in tadpoles exposed to the herbicide blend. Corticosterone levels reduced significantly in animals exposed to glyphosate and the herbicide blend. Oxidative stress markers had a tissue-dependent response. In the liver, glutathione S-transferase increased, and superoxide dismutase and catalase decreased in animals exposed to sulfentrazone and glyphosate. Lipoperoxidation was reduced in the glyphosate treatment. In the caudal muscle, superoxide dismutase and catalase activities were maintained, and there was a decline in the levels of glutathione S-transferase and TBARS only in the blend group.

Keywords

Rana catesbeiana Intermediate metabolism Corticosterone Antioxidative enzymes Lipid peroxidation Herbicides 

Notes

Acknowledgments

The authors thank the Laboratório de Fisiologia da Conservação group, especially the biologist Luiza Petroli Ruckheim for the support in the practical work. We also thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the mastership grant provided to the first author and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the productive grant provided to the corresponding author (process no. 307071/2015-4).

Funding information

This study was financially supported by the PPG—Ecology and Evolution of Biodiversitye of the PUCRS and by National Council for Scientific and Technological Development (CNPq), process no. 307071 / 2015-4 .

Compliance with ethical standards

All procedures followed the Conselho Nacional de Controle de Experimentação Animal (CONCEA 2015) guide and were approved by the Comitê de Ética para Uso de Animais da Universidade (protocol no. 15/00471—CEUA/PUCRS).

Supplementary material

11356_2019_5533_MOESM1_ESM.pptx (48 kb)
ESM 1 (PPTX 48 kb)

References

  1. Armas ED, Monteiro RTR, Antunes PM, Santos MAPF, Camargo PB, Abakerli RB (2007) Diagnóstico espaço temporal da ocorrência de herbicidas nas águas superficiais e sedimentos do Rio Corumbataí e principais afluentes. Química Nova 30(5):1119–1127CrossRefGoogle Scholar
  2. Bailey DC, Todt CE, Burchfield SL, Pressley AS, Denney RD, Isaac B, Snapp IB, Rekek Negga R, Traynor WL, Fitsanakis VA (2018) Chronic exposure to a glyphosate-containing pesticide leads to mitochondrial dysfunction and increased reactive oxygen species production in Caenorhabditis elegans. Environ Toxicol Pharmacol 57:46–52.  https://doi.org/10.1016/j.etap.2017.11.005 CrossRefGoogle Scholar
  3. Banerjee BD, Seth V, Bhattacharya A, Pasha ST, Chakraborty AK (1999) Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers. Toxicol Lett 107:33–47.  https://doi.org/10.1016/S0378-4274(99)00029-6 CrossRefGoogle Scholar
  4. Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis 1:3–26.  https://doi.org/10.1093/icb/42.3.517 CrossRefGoogle Scholar
  5. Blaustein AR, Johnson PTJ (2003) The complexity of deformed amphibians. Front Ecol Environ 1:87–94.  https://doi.org/10.1890/1540-9295(2003)001[B0087:TCODA]D2.0.CO.2
  6. Bókony V, Móricz ÁM, Tóth Z, Gál Z, Kurali A, Mikó Z, Pásztor K, Szederkényi M, Tóth Z, Ujszegi J, Üveges B, Krüzselyi D, Capon RJ, Hoi H, Hettyey A (2016) Variation in chemical defense among natural populations of common toad, Bufo bufo, tadpoles: the role of environmental factors. J. Chem. Ecol. 42 (4): 329–338.  https://doi.org/10.1007/s10886-016-0690-2
  7. Both C, Lingnau R, Santos-Jr A, Madalozzo B, Lima LP, Grant T (2011) Widespread occurrence of the American bullfrog, Lithobates Catesbeianus (Shaw, 1802) (Anura: Ranidae), in Brazil. S AM J Herpetol 6(2):127–134.  https://doi.org/10.2994/057.006.0203
  8. Both C, Madalozzo B, Lingnau R, Grant T (2014) Amphibian richness patterns in Atlantic Forest areas invaded by American bullfrogs. Austral Ecology 39(7):864–874.  https://doi.org/10.1111/aec.12155 CrossRefGoogle Scholar
  9. Boveris A, Cadenas E (1982) Production of superoxide radicals and hydrogen peroxide in mitochondria. In: Oberley LW (ed) Superoxide dismutase, vol. 2, Boca Raton, pp 15–30Google Scholar
  10. Boveris A, Chance B (1973) The mitocondrial generation of hydrogen peroxide: general properties and effect of hyperbaric oxygen. Biochem J 34:707–717CrossRefGoogle Scholar
  11. Boyland E, Chasseaud LF (1969) The role of glutathione and glutathione S-transferases in mercapturic acid byosinthesis. Adv Enzymol Relat Areas Mol Biol 32:173–219Google Scholar
  12. Brausch MJ, Smith NP (2007) Toxicity of three polyethoxylated tallowamine surfactant formulations to laboratory e field collected fairy shrimp, Thamnocephalus platyurus. Arch Environ Contam Toxicol 52:217–221.  https://doi.org/10.1007/s00244-006-0151-y CrossRefGoogle Scholar
  13. Bucciarelli T, Sacchetta P, Pennelli A, Cornelio L, Romagnoli R, Merino S, Petruzelli R, Di Ilio C. 1999. Characterization of toad glutathione transferase. Biochim Biophys Acta 1431:189–198Google Scholar
  14. Carey C, Heyer WR, Wilkinson J, Alford RA, Arntzen JW, Halliday T, Hungerford L, Lips KR, Middleton EM, Orchard SA, Rand AS (2001) Amphibian declines and environmental change: use of remote-sensing data to identify environmental correlates. Conserv Biol 15:903–913.  https://doi.org/10.1046/j.1523-1739.2001.015004903.x CrossRefGoogle Scholar
  15. Cattaneo R, Clasen B, Loro VL, Menezes CC, Pretto A, Baldisserotto B, Santi A, Avila LA (2011) Toxicological Responses of Cyprinus carpio Exposed to a Commercial Formulation Containing Glyphosate. Bull Environm Contam Toxicol 87 (6):597-602.Google Scholar
  16. Coltro ML, da Silva PR, Valgas AAN, Miguel CM, Freitas BS, Oliveira GT (2017) Influence of the herbicide quinclorac (Facet®) on corticosterone levels, plasma metabolites, and antioxidant balance in liver and muscle tissues of tadpoles of Rana catesbeiana Shaw, 1802. Water, Air and Soil Poll 228(7):228–241.  https://doi.org/10.1007/s11270-017-3404-7 Google Scholar
  17. CONCEA – Conselho Nacional de Controle de Experimentação Animal. 2015. Diretrizes da Prática de Eutanásia do CONCEA. Ministério da Ciência, Tecnologia e Inovação. Brasília, Brasil.Google Scholar
  18. Costa MJ, Monteiro DA, Oliveira-Neto AL, Rantin FT, Kalinin AL (2008) Oxidative stress biomarkers e heart function in bullfrog tadpoles exposed to roundup original. Ecotoxicol. 17(3):153–163.  https://doi.org/10.1007/s10646-007-0178-5 CrossRefGoogle Scholar
  19. Costantini D (2014) Oxidative stress and hormesis in evolutionary ecology and physiology: a marriage between mechanistic and evolutionary approaches. Springer-Verlag, BerlinCrossRefGoogle Scholar
  20. Costantini D, Marasco V, Møller AP (2011) A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. J Comp Physiol B 181:447–456.  https://doi.org/10.1007/s00360-011-0566-2 Google Scholar
  21. Cunha ER, Delariva RL (2009) Introdução da rã-touro, Lithobates catesbeianus (SHAW, 1802): uma revisão. SaBios. 4:2 Google Scholar
  22. Dallegrave E, Mantese FD, Coelho RS, Pereira JD, Dalsenter PR, Langeloh A (2003) The teratogenic potential of the herbicide glyphosate-roundup in Wistar rats. Toxicol Lett 142:45–52.  https://doi.org/10.1016/S0378-4274(02)00483-6 CrossRefGoogle Scholar
  23. Damalas CA, Eeleftherohorinos IG (2001) Dicamba and atrazine antagonism on sulfonylurea herbicides used for Johnsongrass (Sorghum halepense) control in corn (Zea mays). Weed Technol 15(1):62–67CrossRefGoogle Scholar
  24. Denver RJ (2009) Structural and functional evolution of vertebrate neuroendocrine stress systems. Ann N Y Acad Sci 1163:1–16CrossRefGoogle Scholar
  25. Dornelles MF, Oliveira GT (2014) Effect of atrazine, glyphosate and quinclorac on biochemical parameters, lipid peroxidation e survival in bullfrog tadpoles (Lithobates catesbeianus). Arch Environ Contam Toxicol 66:415–429  https://doi.org/10.1007/s00244-013-9967-4 CrossRefGoogle Scholar
  26. Dornelles MF, Oliveira GT (2016) Toxicity of atrazine, glyphosate, and quinclorac in bullfrog tadpoles exposed to concentrations below legal limits. Environ Sci Pollut Res 23(2):1610–1620  https://doi.org/10.1007/s11356-015-5388-4 CrossRefGoogle Scholar
  27. El-Banna SG, Attia AM, Hafez AA, El-Kazaz SA (2009) Effect of garlic consumption on blood lipid and oxidant/ antioxidant parameters in rat males exposed to chlorpyrifos. Slovak J Anim Sci 42:111–117.  https://doi.org/10.5897/AJB12.2797 Google Scholar
  28. Freitas JS, Teresa FB, de Almeida EA (2017) Influence of temperature on the antioxidant responses and lipid peroxidation of two species of tadpoles (Rhinella schneideri and Physalaemus nattereri) exposed to the herbicide sulfentrazone (Boral 500SC®). Comp Biochem Physiol C: Toxicol Pharmacol 197:32–44.  https://doi.org/10.1016/j.cbpc.2017.04.005 Google Scholar
  29. Giesy JP, Dobson S, Solomon KR (2000) Ecotoxicological risk assessment for roundup herbicide. Rev Environ Contam Toxicol 167:35–120 https://link.springer.com/chapter/10.1007/978-1-4612-1156-3_2 Google Scholar
  30. Gill JPK, Sethi N, Mohan A, Datta S, Girdhar M (2018) Glyphosate toxicity for animals. Environ Chem Lett 16:401–426.  https://doi.org/10.1007/s10311-017-0689-0 CrossRefGoogle Scholar
  31. Gripp HS, Freitas JS, Almeida EA, Bisinoti MC, Moreira AB (2017) Biochemical effects of fipronil and its metabolites on lipid peroxidation and enzymatic antioxidantv defense in tadpoles (Eupemphix nattereri: Leiuperidae). Ecotoxicol Environ Saf 136:173–179.  https://doi.org/10.1016/j.ecoenv.2016.10.027 CrossRefGoogle Scholar
  32. Hatzios KK (1998) Supplement to herbicide handbook. Weed Science Society of America, Lawrence, pp 67–69Google Scholar
  33. Hayes T (1997) Steroids as potential modulators of thyroid hormone activity in anuran metamorphosis. Am Zool 37:185–194CrossRefGoogle Scholar
  34. Hermes-Lima M (2004) Oxygen in biology and biochemistry: role of free radicals. In: Storey KB (ed) Functional metabolism: regulation and adaptation. John Wiley and Sons, New JerseyGoogle Scholar
  35. Hermes-Lima M, Storey KB (1993) In vitro oxidative inactivation of glutathione S-transferase from a freeze tolerant reptile. Mol Cell Biochem 124(2):149–158 https://link.springer.com/article/10.1007/BF00929207 CrossRefGoogle Scholar
  36. Howe CM, Berrill M, Pauli BD, Helbring CC, Werry K, Veldhoen N (2004) Toxicity of glyphosate-based pesticides to four North American frog species. Environ Toxicol Chem 23:1928–1938.  https://doi.org/10.1897/03-71 CrossRefGoogle Scholar
  37. Iguchi EY (2012) Alterações comportamentais em Geophagus brasiliensis submetidos à ação do herbicida glifosato. Trabalho de Conclusão de Curso (Bacharelado em Ciências Biológicas). Instituto de Biociências, Letras e Ciências Exatas, UNESP, São José do Rio Preto, SP.e 21pGoogle Scholar
  38. Jones L, Gossett DR, Banks SW, McCallum ML (2010) Antioxidant defense system in tadpoles of the American bullfrog (Lithobates catesbeianus) exposed to paraquat. J Herpetol 44(2):222–228CrossRefGoogle Scholar
  39. Kiesecker JM, Blaustein AR, Belden LK (2001) Complex causes of amphibian population declines. Nature. 410:681–684.  https://doi.org/10.1038/35070552 CrossRefGoogle Scholar
  40. Kollman W, Segawa R (1995) Interim report of the pesticide chemistry database 1995. Environmental Hazards Assessment Program. EH95-04. Environmental Protection Agency, Department of Pesticide Regulation, CaliforniaGoogle Scholar
  41. Lajmanovich RC, Attademo AM, Peltzer PM, Junges CM, Cabagna MC (2011) Toxicity of four herbicide formulations with glyphosate on Rhinella arenarum (Anura: Bufonidae) tadpoles: B-esterases and glutathione s-transferase inhibitors. Arch Environ Contam Toxicol 60:681–689  https://doi.org/10.1007/s00244-010-9578-2 CrossRefGoogle Scholar
  42. Lau ETC, Karraker NE, Leung KMY (2015) Temperature-dependent acute toxicity of methomyl pesticide on larvae of 3 Asian amphibian species. Environ Toxicol Chem 34:2322–2327.  https://doi.org/10.1002/etc.3061 CrossRefGoogle Scholar
  43. Lima LC, Ribeiro LP, Leite RC (2006) Estresse em peixes. Rev Bras Reprod Anim 30:113–117Google Scholar
  44. Lima ES, Abdalla DSP (2001) Peroxidação lipídica: mecanismos e avaliação em amostras biológicas. Braz J Pharm Sci 37(3):293–303Google Scholar
  45. Lushchak VI,  Bagnyukova TV (2006) Effects of different environmental oxygen levels on free radical processes in fish. Comp Biochem Physiol [B] 144 (3):283-289.  https://doi.org/10.1016/j.cbpb.2006.02.014
  46. Martinez CO, Silva CMMS, Fay EF, Abakerli RB, Maia AHN, Durrant LR (2010) Microbial degradation of sulfentrazone in a Brazilian rhodic hapludox soil. Braz J Microbiol 41:209–217.  https://doi.org/10.1590/S1517-83822010000100030 CrossRefGoogle Scholar
  47. Mesléard F, Gauthier-Clerc M, Lambret P (2016) Impact of the insecticide Alphacypermetrine e herbicide Oxadiazon, used singly or in combination, on the most abundant frog in French rice fields, Pelophylax perezi. Aquat Toxicol 176:24–29.  https://doi.org/10.1016/j.aquatox.2016.04.004 CrossRefGoogle Scholar
  48. Modesto KA, Martinez CBR (2010) Roundup causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus. Chemosphere. 78:294–299.  https://doi.org/10.1016/j.chemosphere.2009.10.047 CrossRefGoogle Scholar
  49. Moura MAM, Franco DAS, Matallo MB (2008) Impacto de herbicidas sobre os recursos hídricos. Rev Tecnol Inov Agropec:142–151Google Scholar
  50. Nelson DL, Cox MM (2014) Princípios de Bioquímica: Lehninger. Artmed, Porto AlegreGoogle Scholar
  51. Nunes BS, Travasso R, Gonçalves F, Castro BB (2015) Biochemical and physiological modifications in tissues of Sardina pilchardus: spatial and temporal patterns as a baseline for biomonitoring studies. Front Environ Sci 3:1–14.  https://doi.org/10.3389/fenvs.2015.00007 CrossRefGoogle Scholar
  52. Nunes C, Silva A, Soares E, Ganias K (2011) The use of hepatic e somatic indices e histological information to characterize the reproductive dynamics of Atlantic sardine Sardina pilchardus from the Portuguese coast. Mar Coast Fish 3:127–144.  https://doi.org/10.1080/19425120.2011.556911 CrossRefGoogle Scholar
  53. Osipe JB, Teixeira ES, Osipe R, Sorace MAF, Cossa CA, Neto AMO (2008) Association of sulfentrazone and glyphosate for weed control in RR® soybean. Revista Brasileira de Herbicidas 7(1):15–25 www.rbherbicidas.com.br CrossRefGoogle Scholar
  54. Pandey A, Rudraiah M (2015) Analysis of endocrine disruption effect of Roundup® in adrenal gland of male rats. Toxicol Rep 2:1075–1085CrossRefGoogle Scholar
  55. Passos ABR, Freitas MAM, Torres LG, Silva AA, Queiroz MEL, Lima CF (2013) Sorption and desorption of sulfentrazone in Brazilian soils. J Environ Sci Health B 48(8):646–650.  https://doi.org/10.1080/03601234.2013.777313 CrossRefGoogle Scholar
  56. Păunescu A, Ponepal CM (2011) Effect of Roundup® herbicide on physiological indices in marsh frog Pelophylax ridibundus. Scientific Papers, Bucharest 54:269–274Google Scholar
  57. Persch TS, Weimer RN, Freitas BS, Oliveira GT (2017) Metabolic parameters and oxidative balance in juvenile Rhamdia quelen exposed to rice paddy herbicides: Roundup®, Primoleo® and Facet®. Chemosphere. 174:98–109.  https://doi.org/10.1016/j.chemosphere.2017.01.092 CrossRefGoogle Scholar
  58. Pignati WA, Souza e Lima FAN, de Lara SS, Correa MLM, Barbosa JR, Costa Leão LH, Pignatti MG (2017) Spatial distribution of pesticide use in Brazil: a strategy for health surveillance.  https://doi.org/10.1590/1413-812320172210.17742017
  59. Preuss JF (2017) Distribuição espaço-temporal da rã invasora, Lithobates catesbeianus (Anura, Ranidae) (Shaw, 1802) em dois remanescentes florestais da Mata Atlântica no sul do Brasil. Biota Amazônia 7(2):26–30  https://doi.org/10.18561/2179-5746/biotaamazonia Google Scholar
  60. Queiroz GMP, da Silva MR, Bianco RJF, Pinheiro A, Kaufmann V (2011) Transporte De Glifosato Pelo Escoamento Superficial e Por Lixiviação Em Um Solo Agrícola. Quím Nova 34(2):190–195.  https://doi.org/10.1590/S0100-40422011000200004
  61. Relyea RA (2005) The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol Appl 15:618–627.  https://doi.org/10.1890/03-5342 CrossRefGoogle Scholar
  62. Rissoli RZ, Abdalla FC, Costa MJ, Rantin FT, Mckenzie DJ, Kalinin AL (2016) Effects of glyphosate and the glyphosate based herbicides Roundup Original® and Roundup Transorb® on respiratory morphophysiology of bullfrog tadpoles. Chemosphere. 156:37–44.  https://doi.org/10.1016/j.chemosphere.2016.04.083 CrossRefGoogle Scholar
  63. Rossi SC, Silva MD, Piancini LD, Oliveira Ribeiro CA, Cestari MM, Silva de Assis HC (2011) Sublethal effects of waterborne herbicides in tropical freshwater fish. Bull Environ Contam Toxicol 87:603–607.  https://doi.org/10.1007/s00128-011-0397-6 CrossRefGoogle Scholar
  64. Salbego J, Pretto A, Gioda CR, Menezes CC, Lazzari R, Neto JR, Baldisserotto B, Loro VL (2010) Herbicide formulation with glyphosate affects growth, acetylcholinesterase activity, and metabolic and hematological parameters in piava (Leporinus obtusidens). Arch Environ Contam Toxicol 58:740–745.  https://doi.org/10.1007/s00244-009-9464-y CrossRefGoogle Scholar
  65. Santos-Pereira M, Rocha CFD (2015) Invasive bullfrog Lithobates catesbeianus (Anura: Ranidae) in the Paraná state, Southern Brazil: a summary of the species spread. Revista Brasileira de Zoociências 16:141–147Google Scholar
  66. Santos LFJ, Oliveira-Bahia VRL, Nakaghi LSO, De Stefani MV, Gonçalves AM, Pizauro Junior JM (2016) Ontogeny of the digestive enzymes of tadpoles of Lithobates catesbeianus. Copeia. 104(4):838–842.  https://doi.org/10.1643/CG-16-432
  67. Solomon KR, Carr JA, Du Preez LH, Giesy JP, Kendall RJ, Smith EE, Van Der Kraak GJ (2008) Effects of atrazine on fish, amphibians, and aquatic reptiles: a critical review. Crit Rev Toxicol 38:721–772.  https://doi.org/10.1080/10408440802116496 CrossRefGoogle Scholar
  68. Sounderraj SFL, Sekhar P, Kumar PS, Lesley N (2011) Effect of systemic pesticide phosphamidon on haematological aspects of common frog Rana tigrina. Int J Pharm Biol Arch 2:1776–1780Google Scholar
  69. Tavares-Dias M, Martins ML, Moraes FR (2000) Relação hepatossomática e esplenosomática em peixes teleósteos de cultivo intensivo. Rev Bras Zool 17:273–281CrossRefGoogle Scholar
  70. Thorngren JL, Harwood AD, Murphy TM, Huff Hartz KE, Fung CY, Lydy MJ (2017) Fate and risk of atrazine and sulfentrazone to non-target species at an agriculture site. Environ Toxicol Chem.  https://doi.org/10.1002/etc.3664
  71. Tsahar E, Arad Z, Izhaki I, Guglielmo CG (2006) The relationship between uric acid and its oxidative product allantoin: a potential indicator for the evaluation of oxidative stress in birds. J Comp Phys [B] 176:653–661.  https://doi.org/10.1007/s00360-006-0088-5 CrossRefGoogle Scholar
  72. UNICA (2015) União da industria da Cana-de-açucar. Unicadata. http://www.unicadata.com.br
  73. USEPA - US Environmental Protection Agency 2009 Sulfentrazone registration review. EPA-HQ-OPP-2009-0624, WashingtonGoogle Scholar
  74. Van Der Kraak GJ, Hosmer AJ, Hanson ML, Kloas W, Solomon KR (2014) Effects of atrazine in fish, amphibians, e reptiles: an analysis based on quantitative weight of evidence. Crit Rev Toxicol 44:1–66.  https://doi.org/10.3109/10408444.2014.967836 CrossRefGoogle Scholar
  75. Vidal RA (2002) Ação dos herbicidas: absorção, translocação e metabolização. Evangraf, Porto AlegreGoogle Scholar
  76. Vieira MI (1993) Rã touro gigante: características e reprodução. Infotec, São PauloGoogle Scholar
  77. Vutukuru SS (2005) Acute effects of hexavalent chromium on survival, oxygen consumption, hematological parameters and some biochemical profiles of the indian major carp, Labeo rohita. Int J Environ Res Public Health 2:456–462.  https://doi.org/10.3390/ijerph2005030010 CrossRefGoogle Scholar
  78. Webster NR, Nunn JF (1988) Molecular structure of free radicals and their importance in biological reactions. Br J Anaesth 60:98–108CrossRefGoogle Scholar
  79. Whiles MR, Lips KR, Pringle CM, Kilham SS, Bixby RJ, Brenes R, Montgomery C (2006) The efects of amphibian population declines on the structure and function of Neotropical stream ecosystems. Front Ecol Environ 4(1):27–34CrossRefGoogle Scholar
  80. Wright ML, Guertin CJ, Duffy JL, Szatkowski MC, Visconti RF, Alves CD (2003) Developmental and diel profiles of plasma corticosteroids in the bullfrog, Rana catesbeiana. Comp Bioch Phys [A] 135:585–595.  https://doi.org/10.1016/S1095-6433(03)00140-5 CrossRefGoogle Scholar
  81. Yin X, Jiang S, Yu J, Zhu G, Wu H, Mao C (2014) Effects of spirotetramat on the acute toxicity, oxidative stress, e lipid peroxidation in Chinese toad (Bufo bufo gargarizans) tadpoles. Enviroln Toxicol Pharm 37:1229–1235.  https://doi.org/10.1016/j.etap.2014.04.016 CrossRefGoogle Scholar
  82. Zanette J, Monserrat JM, Bianchini A (2015) Biochemical biomarkers in barnacles Balanus improvises: pollution and seasonal effects. Mar Environ Res 103:74–79.  https://doi.org/10.1016/j.marenvres.2014.11.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Sciences, Conservation Physiology LaboratoryPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  2. 2.PPG—Ecology and Evolution of BiodiversityPorto AlegreBrazil

Personalised recommendations