Advertisement

An environment-friendly composite as an adsorbent for removal Cu (II) ions

  • Livy Laysandra
  • Immanuel Joseph Ondang
  • Yi-Hsu Ju
  • Jindrayani Nyoo Putro
  • Shella Permatasari Santoso
  • Felycia Edi SoetarejoEmail author
  • Suryadi IsmadjiEmail author
Research Article
  • 44 Downloads

Abstract

The low-cost composite film was prepared by incorporating chitosan, berry soap fruit extract (rarasaponin), and bentonite as the raw materials. The produced chitosan/rarasaponin/bentonite (CRB) composite exhibits outstanding adsorption capability toward copper metal ions (Cu(II)). A series of static adsorption experiments were carried out to determine the isotherm and kinetic properties of CRB composite in the adsorption process. The adsorption equilibrium shows a good fit with the Langmuir isotherm model; the CRB composite has maximum uptake of Cu (II) of 412.70 mg/g; the kinetic adsorption data exhibit a good fit with the pseudo-second-order model. The thermodynamic parameters, ΔH°, ΔG°, and ΔS°, obtained from the isotherm data indicate that the uptake of copper ions by CRB composite is more favored at low temperatures. This study shows that physicochemical modified adsorbent, namely CRB composite, can remove Cu (II) better than pristine adsorbent of AAB and chitosan. The CRB composite also shows potential reusability.

Keywords

Ca-bentonite Rarasaponin Chitosan Heavy metals Copper ions Isotherms Kinetics Thermodynamics Adsorption 

Notes

Funding information

Financial support from Indonesia Ministry of Research and Technology and Higher Education through PDUPT research scheme.

Supplementary material

11356_2019_5524_MOESM1_ESM.docx (112 kb)
ESM 1 (DOCX 112 kb)

References

  1. Aksu Z, Kutsal TA (1991) A bioseparation process for removing Pb(II) ions from wastewater by using C. vulgaris. J Chem Technol Biotechnol 52:108–118Google Scholar
  2. Arshadi M, Amiri MJ, Mousavi S (2014) Kinetic, equilibrium and thermodynamic investigations of Ni(II), cd(II), cu(II) and co(II) adsorption on barley straw ash. Water Res Ind 6:1–17.  https://doi.org/10.1016/j.wri.2014.06.001 CrossRefGoogle Scholar
  3. Cervera MF, Heinämäki J, Räsänen M, Maunu SL, Karjalainen M, Acosta OMN, Colarte AI, Yliruusi J (2004) Solid-state characterization of chitosans derived from lobster chitin. Carbohydr Polym 58:401–408.  https://doi.org/10.1016/j.carbpol.2004.08.017 CrossRefGoogle Scholar
  4. Corbett JF (1972) Pseudo first-order kinetics. J Chem Educ 49:663.  https://doi.org/10.1021/ed049p663 CrossRefGoogle Scholar
  5. Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471Google Scholar
  6. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465.  https://doi.org/10.1016/S0032-9592(98)00112-5 CrossRefGoogle Scholar
  7. Horsfall M, Spiff AI (2005) Effects of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by Caladium bicolor (wild cocoyam) biomass. Electron J Biotechnol 8:162–169CrossRefGoogle Scholar
  8. Hua H, Li X, Huang P, Zhang Q, Yuan W (2017) Efficient removal of copper from wastewater by using mechanically activated calcium carbonate. J Environ Manag 203:1–7.  https://doi.org/10.1016/j.jenvman.2017.07.066 CrossRefGoogle Scholar
  9. Inoue K, Yoshizuka K, Ohto K (1999) Adsorptive separation of some metal ions by complexing agent types of chemically modified chitosan. Anal Chim Acta 388:209–218.  https://doi.org/10.1016/S0003-2670(99)00090-2 CrossRefGoogle Scholar
  10. Karakaya E, Aras MS, Erdoğan M, Karagül SÇ, Ersoy MK, Karakaya İ (2018) An electrochemical procedure for copper removal from regenerated pickling solutions of steel plants. Energy technology 2018. The Minerals, Metals & Materials Series. Springer, Cham.  https://doi.org/10.1007/978-3-319-72362-4_24 Google Scholar
  11. Khan MN, Wahab MF (2007) Characterization of chemically modified corncobs and its application in the removal of metal ions from aqueous solution. J Hazard Mater 141:237–244.  https://doi.org/10.1016/j.jhazmat.2006.06.119 CrossRefGoogle Scholar
  12. Komulski M, Saneluta C (2004) Point of zero charge/isoelectric point of exotic oxides: Tl2O3. J Colloid Interface Sci 280:544–545.  https://doi.org/10.1016/j.jcis.2004.08.079 CrossRefGoogle Scholar
  13. Kontoudakis N, Mierczynska-Vasilev A, Guo A, Smith PA, Scollary GR, Wilkes EN, Clark AC (2018) Removal of sulfide-bound copper from white wine by membrane filtration. Aust J Grape Wine R 25:53–61.  https://doi.org/10.1111/ajgw.12360 CrossRefGoogle Scholar
  14. Kurita K (1998) Chemistry and application of chitin and chitosan. Polym Degrad Stab 59:117–120.  https://doi.org/10.1016/S0141-3910(97)00160-2 CrossRefGoogle Scholar
  15. Kurniawan A, Sutiono H, Ju YH, Soetaredjo FE, Ayucitra A, Yudha A, Ismadji S (2011) Utilization of rarasaponin natural surfactant for organo-bentonite preparation: application for methylene blue removal from aqueous effluent. Microporous Mesoporous Mater 142:184–193.  https://doi.org/10.1016/j.micromeso.2010.11.032 CrossRefGoogle Scholar
  16. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403.  https://doi.org/10.1021/ja02242a004 CrossRefGoogle Scholar
  17. Laysandra L, Ondang IJ, Ju Y-H, Ariandini BH, Mariska A, Soetaredjo FE, Putro JN, Santoso SP, Darsono FL, Ismadji S (2019) Highly adsorptive chitosan/saponin-bentonite composite film for removal of methyl orange and Cr(VI). Environ Sci Pollut Res 26:5020–5037.  https://doi.org/10.1007/s11356-018-4035-2 CrossRefGoogle Scholar
  18. Li N, Bai R (2005) Copper adsorption on chitosan-cellulose hydrogel beads: behaviors and mechanisms. Sep Purif Technol 42:237–247.  https://doi.org/10.1016/j.seppur.2004.08.002 CrossRefGoogle Scholar
  19. Liu M, Deng Y, Zhan H, Zhang X (2002) Adsorption and desorption of copper(II) from solutions on new spherical cellulose adsorbent. J Appl Polym Sci 84:478–485.  https://doi.org/10.1002/app.10114 CrossRefGoogle Scholar
  20. Lu F, Huang C, You L, Wang J, Zhang Q (2017) Magnetic hollow carbon microspheres as a reusable adsorbent for rhodamine B removal. RSC Adv 7:23255.  https://doi.org/10.1039/c7ra03045b CrossRefGoogle Scholar
  21. Merrifield JD, Davids WG, MacRae JD, Amirbahman A (2004) Uptake of mercury by thiol-grafted chitosan gel beads. Water Res 38:3132–3138.  https://doi.org/10.1016/j.watres.2004.04.008 CrossRefGoogle Scholar
  22. Mohammadi T, Moheb A, Sadrzadeh M, Razmi A (2004) Separation of copper ions by electrodialysis using Taguchi experimental design. Desalination 169:21–31.  https://doi.org/10.1016/j.desal.2004.08.004 CrossRefGoogle Scholar
  23. Ngah WSW, Fatinathan S (2008) Adsorption of cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads. Chem Eng J 143:62–72.  https://doi.org/10.1016/j.cej.2007.12.006 CrossRefGoogle Scholar
  24. Nunthanid J, Puttipipatkhachorn S, Yamamoto K, Peck GE (2001) Physical properties and molecular behavior of chitosan films. Drug Dev Ind Pharm 27:143–157.  https://doi.org/10.1081/DDC-100000481 CrossRefGoogle Scholar
  25. Nyairo WN, Eker YR, Kowenje C, Akin I, Bingol H, Tor A, Ongeri DM (2018) Efficient adsorption of lead (II) and copper (II) from aqueous phase using oxidized multiwalled carbon nanotubes/polypyrrole composite. Sep Sci Technol 53:1498–1510.  https://doi.org/10.1080/01496395.2018.1424203 CrossRefGoogle Scholar
  26. Sankararamakrishnan N, Sanghi R (2006) Preparation and characterization of a novel xanthated chitosan. Carbohydr Polym 66:160–167.  https://doi.org/10.1016/j.carbpol.2006.02.035 CrossRefGoogle Scholar
  27. Santore RC, Di-Toro DM, Paquin PR, Allen HE, Meyer JS (2001) Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and daphnia. Environ Toxicol Chem 20:2397–2402.  https://doi.org/10.1016/S1462-9011(00)00047-2 CrossRefGoogle Scholar
  28. Sotomayor FJ, cychosz KA, Thommes M (2018) Characterization of micro/mesoporous materials by Physisorption: concepts and case studies. Acc Mater Surf Res 3:34–50Google Scholar
  29. Torres-Caban R, Vega-Olivencia CA, Alamo-Nole L, Morales-Irizarry D, Roman-Velazquez F, Mina-Camilde N (2019) Removal of copper fromWater by adsorption with calcium-alginate/spent-coffee-grounds composite beads. Materials 12:395.  https://doi.org/10.3390/ma12030395 CrossRefGoogle Scholar
  30. Turkington RW, Tracy FM (1958) Spectrophotometric determination of Ultramicro amounts of copper with 1,5-Diphenylcarbohydrazide. Anal Chem 30:1699–1701.  https://doi.org/10.1021/ac60142a040 CrossRefGoogle Scholar
  31. Yu J, Zheng J, Lu Q, Yang S, Wang X, Zhang X, Yang W (2016) Reusability and selective adsorption of Pb2+ on chitosan/P(2-acryl amido-2-methyl-1-propanesulfonic acid-co-acrylic acid) hydrogel. Iran Polym J 25:1009–1019.  https://doi.org/10.1007/s13726-016-0487-8 CrossRefGoogle Scholar
  32. Zhou L, Wang Y, Liu Z, Huang Q (2009) Characteristics of equilibrium, kinetics studies for adsorption of hg(II), cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. J Hazard Mater 161:995–1002.  https://doi.org/10.1016/j.jhazmat.2008.04.078 CrossRefGoogle Scholar
  33. Zhou L, Huang Y, Qiu W, Sun Z, Liu Z, Song Z (2017) Adsorption properties of Nano-MnO2–biochar composites for copper in aqueous solution. Molecules 22:173.  https://doi.org/10.3390/molecules22010173 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Livy Laysandra
    • 1
    • 2
  • Immanuel Joseph Ondang
    • 1
  • Yi-Hsu Ju
    • 3
  • Jindrayani Nyoo Putro
    • 2
  • Shella Permatasari Santoso
    • 1
    • 2
  • Felycia Edi Soetarejo
    • 1
    • 2
    Email author
  • Suryadi Ismadji
    • 1
    • 2
    Email author
  1. 1.Department of Chemical EngineeringWidya Mandala Surabaya Catholic UniversitySurabayaIndonesia
  2. 2.Department of Chemical EngineeringNational Taiwan University of Science and TechnologyTaipei CityTaiwan
  3. 3.Graduate Institute of Applied Science and TechnologyNational Taiwan University of Science and TechnologyTaipei CityTaiwan

Personalised recommendations