Advertisement

Determinants of carbon emissions in Pakistan’s transport sector

  • Yasir Rasool
  • Syed Anees Haider Zaidi
  • Muhammad Wasif ZafarEmail author
Research Article
  • 30 Downloads

Abstract

The transport infrastructure plays an imperative role in a country’s progress. At the same time, it causes environmental degradation due to extensive use of fossil fuels. The transport system of Pakistan is largely dependent on nonrenewable energy sources (oil, coal, and gas), which are hazardous to environmental quality. This research uses an autoregressive distributive lag model (ARDL) to examine the impact of oil prices, energy intensity of road transport, economic growth, and population density on carbon dioxide (CO2) emissions of Pakistan’s transport sector during the 1971–2014 period. The ARDL bounding test examines the cointegration and long-run relationships among the variables, and the directions of causal relationships are found through the Granger causality vector error correction model (VECM). The long-run results indicate that increases in oil prices and economic growth help to reduce the transport sector’s CO2 emissions, while rising energy intensity, population concentration, and road infrastructure increase them, with population playing a dominant role. The findings of this study can help authorities in Pakistan to develop suitable energy policies for the transport sector. Among other recommendations, the study recommends investment in renewable energy projects and energy-efficient transport systems (e.g., light train, rapid transport system, and electric busses) and environmental taxes (subsidies) on the vehicles that use fossil fuels (renewable energy).

Keywords

Road transport energy  intensity CO2 emissions from transport STIRPAT Pakistan 

Notes

Supplementary material

11356_2019_5504_MOESM1_ESM.docx (28 kb)
ESM 1 (DOCX 27 kb)

References

  1. Achour H, Belloumi M (2016) Investigating the causal relationship between transport infrastructure, transport energy consumption and economic growth in Tunisia. Renew Sust Energ Rev 56:988–998.  https://doi.org/10.1016/j.rser.2015.12.023 CrossRefGoogle Scholar
  2. Alshehry AS, Belloumi M (2017) Study of the environmental Kuznets curve for transport carbon dioxide emissions in Saudi Arabia. Renew Sust Energ Rev 75:1339–1347.  https://doi.org/10.1016/j.rser.2016.11.122 CrossRefGoogle Scholar
  3. Andrés L, Padilla E (2018) Driving factors of GHG emissions in the EU transport activity. Transp Policy 61:60–74.  https://doi.org/10.1016/j.tranpol.2017.10.008 CrossRefGoogle Scholar
  4. Belloumi M, Alshehry AS (2015) Sustainable energy development in Saudi Arabia. Sustainability 7:5153–5170.  https://doi.org/10.3390/su7055153 CrossRefGoogle Scholar
  5. Ben JM, Belloumi M (2017) Investigation of the causal relationships between combustible renewables and waste consumption and CO2 emissions in the case of Tunisian maritime and rail transport. Renew Sust Energ Rev 71:820–829.  https://doi.org/10.1016/j.rser.2016.12.108 CrossRefGoogle Scholar
  6. BP Statistics (2017) BP Statistics. http://www.bp.com Accessed 22 Sept 2018
  7. Chandran VGR, Tang CF (2013) The impacts of transport energy consumption, foreign direct investment and income on CO 2 emissions in ASEAN-5 economies. Renew Sust Energ Rev 24:445–453CrossRefGoogle Scholar
  8. Zhang C, Lin Y (2012) Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China. Energy Policy 49:488–498CrossRefGoogle Scholar
  9. Chen L-J, Lin Y-L (2015) Does air pollution respond to petroleum price? Int J Appl Econ 12(2):104–125Google Scholar
  10. Danish, Balouch MA (2018) Dynamic linkages between road transport energy consumption, economic growth, and environmental quality: evidence from Pakistan. Environ Sci Pollut Res 25:7541–7552.  https://doi.org/10.1007/s11356-017-1072-1 CrossRefGoogle Scholar
  11. Danish, Balouch MA, Suad S (2018a) Modeling the impact of transport energy consumption on CO2 emission in Pakistan: evidence from ARDL approach. Environ Sci Pollut Res 25:9461–9473.  https://doi.org/10.1007/s11356-018-1230-0 CrossRefGoogle Scholar
  12. Danish, Zhang B, Wang Z, Bo W (2018b) Energy production, economic growth and CO2 emission: evidence from Pakistan. Nat Hazards 90:27–50.  https://doi.org/10.1007/s11069-017-3031-z CrossRefGoogle Scholar
  13. Dietz T, Rosa EA (1997) Effects of population and affluence on CO2 emissions. Proc Natl Acad Sci U S A 94:175–179.  https://doi.org/10.1073/pnas.94.1.175
  14. Du L, Wei C, Cai S (2012) Economic development and carbon dioxide emissions in China: provincial panel data analysis. China Econ Rev 23:371–384.  https://doi.org/10.1016/j.chieco.2012.02.004 CrossRefGoogle Scholar
  15. Du H, Chen Z, Peng B et al (2019) What drives CO2 emissions from the transport sector? A linkage analysis. Energy 175:195–204.  https://doi.org/10.1016/j.energy.2019.03.052 CrossRefGoogle Scholar
  16. Ehrlich PR, Holdren JP (1971) Impact of population growth. Science 171(80):1212–1217CrossRefGoogle Scholar
  17. Filipescu DA, Prashantham S, Rialp A, Rialp J (2013) Technological innovation and exports : unpacking their reciprocal causality. J Int Mark 21:23–38CrossRefGoogle Scholar
  18. Guo J, Zhang Y-J, Zhang K-B (2018) The key sectors for energy conservation and carbon emissions reduction in China: evidence from the input-output method. J Clean Prod 179:180–190.  https://doi.org/10.1016/j.jclepro.2018.01.080 CrossRefGoogle Scholar
  19. Hagemann A (2017) Cluster-robust bootstrap inference in quantile regression models. J Am Stat Assoc 112:446–456.  https://doi.org/10.1080/01621459.2016.1148610 CrossRefGoogle Scholar
  20. James G, MacKinnon, Alfred A, Haug, Michelis L (1999) Numerical distribution functions of likelihood ratio tests for cointegration. Journal of Applied Econometrics 14 (5):563-577Google Scholar
  21. Kharbach M, Chfadi T (2017) CO2 emissions in Moroccan road transport sector: Divisia, Cointegration, and EKC analyses. Sustain Cities Soc 35:396–401.  https://doi.org/10.1016/j.scs.2017.08.016 CrossRefGoogle Scholar
  22. Liddle B (2013) Environmental Modelling & Software Population , af fl uence , and environmental impact across development : evidence from panel cointegration modeling. Environ Model Softw 40:255–266.  https://doi.org/10.1016/j.envsoft.2012.10.002 CrossRefGoogle Scholar
  23. Liddle B, Liddle B (2015) Urban transport pollution : revisiting the environmental Kuznets curve urban transport pollution : revisiting the environmental Kuznets curve. UJST 9:502–508.  https://doi.org/10.1080/15568318.2013.814077 CrossRefGoogle Scholar
  24. Lin B, Xu B (2017) Which provinces should pay more attention to CO 2 emissions ? Using the quantile regression to investigate China ’ s manufacturing industry. J Clean Prod 164:980–993.  https://doi.org/10.1016/j.jclepro.2017.07.022 CrossRefGoogle Scholar
  25. MacKinnon J, Haug A, Michelis L (1999) Numerical distribution functions of likelihood ratio tests for cointegration. J Appl Econom 14:563–577Google Scholar
  26. Song M, Wu N, Wu K, (2014) Energy Consumption and Energy Efficiency of the Transportation Sector in Shanghai. Sustainability 6 (2):702-717Google Scholar
  27. Pesaran MH, Shin Y, Smith RJ (2001) Bounds testing approaches to the analysis of level relationships. J Appl Econ 16:289–326.  https://doi.org/10.1002/jae.616 CrossRefGoogle Scholar
  28. Peterson EWF (2017) The role of population in economic growth. SAGE Open 7:2158244017736094.  https://doi.org/10.1177/2158244017736094 CrossRefGoogle Scholar
  29. York r, Eugene A Rosa, Dietz t, (2003) STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts. Ecological Economics 46 (3):351-365Google Scholar
  30. Roberts TD (2014) Intergenerational transfers in US county-level CO2 emissions, 2007. Popul Environ 35:365–390.  https://doi.org/10.1007/s11111-013-0193-9 CrossRefGoogle Scholar
  31. Saboori B, Sapri M, bin Baba M (2014) Economic growth, energy consumption and CO2 emissions in OECD (Organization for Economic Co-operation and Development)’s transport sector: a fully modified bi-directional relationship approach. Energy 66:150–161.  https://doi.org/10.1016/j.energy.2013.12.048 CrossRefGoogle Scholar
  32. Saidi S, Hammami S (2017) Modeling the causal linkages between transport, economic growth and environmental degradation for 75 countries. Transp Res Part D Transp Environ 53:415–427.  https://doi.org/10.1016/j.trd.2017.04.031 CrossRefGoogle Scholar
  33. Santos G (2017) Road transport and CO2 emissions: what are the challenges? Transp Policy 59:71–74.  https://doi.org/10.1016/j.tranpol.2017.06.007 CrossRefGoogle Scholar
  34. Shahbaz M, Khraief N, Ben JMM (2015) On the causal nexus of road transport CO2 emissions and macroeconomic variables in Tunisia: evidence from combined cointegration tests. Renew Sust Energ Rev 51:89–100CrossRefGoogle Scholar
  35. Shahbaz M, Chaudhary AR, Ozturk I (2017) Does urbanization cause increasing energy demand in Pakistan? Empirical evidence from STIRPAT model. Energy 122:83–93.  https://doi.org/10.1016/j.energy.2017.01.080 CrossRefGoogle Scholar
  36. Sheng P, Guo X (2016) The long-run and short-run impacts of urbanization on carbon dioxide emissions. Econ Model 53:208–215.  https://doi.org/10.1016/j.econmod.2015.12.006 CrossRefGoogle Scholar
  37. Solís JC, Sheinbaum C (2013) Energy consumption and greenhouse gas emission trends in Mexican road transport. Energy Sustain Dev 17:280–287.  https://doi.org/10.1016/j.esd.2012.12.001 CrossRefGoogle Scholar
  38. Song M, Wu N, Wu K (2014) Energy consumption and energy efficiency of the transportation sector in Shanghai. Sustainability 6:702–717.  https://doi.org/10.3390/su6020702
  39. Talbi B (2017) CO2 emissions reduction in road transport sector in Tunisia. Renew Sust Energ Rev 69:232–238.  https://doi.org/10.1016/j.rser.2016.11.208 CrossRefGoogle Scholar
  40. Tan XP, Wang XY (2017) Dependence changes between the carbon price and its fundamentals: a quantile regression approach. Appl Energy 190:306–325.  https://doi.org/10.1016/j.apenergy.2016.12.116 CrossRefGoogle Scholar
  41. Timilsina GR, Shrestha A (2009) Transport sector CO2 emissions growth in Asia: underlying factors and policy options. Energy Policy 37:4523–4539.  https://doi.org/10.1016/j.enpol.2009.06.009 CrossRefGoogle Scholar
  42. Timma L, Zoss T, Blumberga D (2016) Life after the financial crisis. Energy intensity and energy use decomposition on sectorial level in Latvia. Appl Energy 162:1586–1592.  https://doi.org/10.1016/j.apenergy.2015.04.021 CrossRefGoogle Scholar
  43. Toda HY, Phillips PCB (1993) Vector autoregressions and causality. Econometrica 61:1367–1393CrossRefGoogle Scholar
  44. UNDP (2015) Pakistan sustainable transport ( PAKSTRAN ) project CIU- Trucking Islamabad OF CO 2 EMISSIONS FROM. Ideal Expert Serv. http://pakstran.pk/docs/reports/Final Report CO2 Emission LC Scanerio (Rev-01) 3.1.2 A.pdf. Accessed 11 Nov 2018
  45. Wang J, Li L (2015) Computation effects of restructuring China’s energy intensive industries CO2 emissions based on STRIPAT model. J Comput Theor Nanosci 12:6260–6264.  https://doi.org/10.1166/jctn.2015.4664 CrossRefGoogle Scholar
  46. Wang Y, Zhao T (2015) Impacts of energy-related CO2 emissions: evidence from under developed, developing and highly developed regions in China. Ecol Indic 50:186–195.  https://doi.org/10.1016/j.ecolind.2014.11.010 CrossRefGoogle Scholar
  47. Wang P, Wu W, Zhu B, Wei Y (2013) Examining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China. Appl Energy 106:65–71.  https://doi.org/10.1016/j.apenergy.2013.01.036 CrossRefGoogle Scholar
  48. World Bank (2017) World development indicators. http://www.wdi.org/. Accessed 5 Feb 2018
  49. Xu B, Lin B (2015a) How industrialization and urbanization process impacts on CO2 emissions in China: evidence from nonparametric additive regression models. Energy Econ 48:188–202.  https://doi.org/10.1016/j.eneco.2015.01.005 CrossRefGoogle Scholar
  50. Xu B, Lin B (2015b) Carbon dioxide emissions reduction in China’s transport sector: a dynamic VAR (vector autoregression) approach. Energy 83:486–495.  https://doi.org/10.1016/j.energy.2015.02.052 CrossRefGoogle Scholar
  51. York R, Rosa EA, Dietz T (2003) STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts. Ecol Econ 46:351–365.  https://doi.org/10.1016/S0921-8009(03)00188-5
  52. Zhang C, Lin Y (2012) Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China. Energy Policy 49:488–498.  https://doi.org/10.1016/j.enpol.2012.06.048
  53. Zhang C, Nian J (2013) Panel estimation for transport sector CO 2 emissions and its affecting factors : a regional analysis in China. Energy Policy 63:918–926.  https://doi.org/10.1016/j.enpol.2013.07.142 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yasir Rasool
    • 1
  • Syed Anees Haider Zaidi
    • 1
  • Muhammad Wasif Zafar
    • 1
    Email author
  1. 1.School of Management and EconomicsBeijing Institute of TechnologyBeijingChina

Personalised recommendations