Advertisement

One-pot sonochemical synthesis of 3D flower-like hierarchical AgCl microsphere with enhanced photocatalytic activity

  • Hujiabudula Maimaitizi
  • Kuerbangnisha Kadeer
  • Abulajiang Reheman
  • Dilinuer Talifu
  • Yalkunjan Tursun
  • Abulikemu AbuliziEmail author
Research Article
  • 39 Downloads

Abstract

A highly uniform 3D flower-like hierarchical AgCl microsphere was prepared by sonochemical method with the existence of β-dextrin. The 3D flower-like hierarchical structure can be ascribed to the existence of β-dextrin, which provides nucleation sites for the growth of nanosheets because of the strong interaction between β-dextrin and Ag+. The 3D flower-like hierarchical AgCl microspheres were assembled by numerous interleaving nanosheet petals with small thickness. Benefiting from the unique structural features, the as-prepared 3D flower-like hierarchical AgCl microsphere exhibited higher degradation efficiency with degrading 98.17% of methylene blue (MB) and 88.50% of tetracycline (TC) within 40 min, which were both remarkably higher than those of irregular AgCl under visible light irradiation. Besides, the photocatalytic degradation rate constant of 3D flower-like hierarchical AgCl microsphere (0.063 min−1) for MB was 3.94 times higher than that of irregular AgCl (0.016 min−1). Moreover, a possible mechanism for the formation and excellent photocatalytic performance of 3D flower-like hierarchical AgCl microsphere was also proposed.

Keywords

Flower-like Hierarchical AgCl microsphere Visible light Sonochemical Photocatalytic degradation 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (No. 21465022).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2019_5371_MOESM1_ESM.tif (1.6 mb)
ESM 1 (TIF 1611 kb)
11356_2019_5371_Fig8_ESM.png (1.4 mb)

High Resolution Image (JPG 574 kb)

11356_2019_5371_MOESM2_ESM.tif (176 kb)
ESM 2 (JPG 937 kb) (TIF 176 kb)
11356_2019_5371_Fig9_ESM.png (295 kb)

High Resolution Image (JPG 937 kb)

11356_2019_5371_MOESM3_ESM.tif (556 kb)
ESM 3 (TIF 555 kb)
11356_2019_5371_Fig10_ESM.png (356 kb)

High Resolution Image (JPG 2163 kb)

11356_2019_5371_MOESM4_ESM.tif (3.4 mb)
ESM 4 (TIF 3525 kb)
11356_2019_5371_Fig11_ESM.png (2.4 mb)

High Resolution Image (JPG 1011 kb)

References

  1. Abdelraheem WHM, Patil MK, Nadagouda MN, Dionysiou DD (2019) Hydrothermal synthesis of photoactive nitrogen- and boron- codoped TiO2 nanoparticles for the treatment of bisphenol A in wastewater: synthesis, photocatalytic activity, degradation byproducts and reaction pathways. Appl Catal B-Environ 241:598–611CrossRefGoogle Scholar
  2. Butler MA, Ginley D (1978) Prediction of the flat band potentials at semiconductor interfaces from atomic electronegativities. J Electrochem Soc 125(2):228–232CrossRefGoogle Scholar
  3. Chen F, An W, Liu L, Liang Y, Cui W (2017) Highly efficient removal of bisphenol A by a three-dimensional graphene hydrogel-AgBr@rGO exhibiting adsorption/photocatalysis synergy. Appl Catal B-Environ 217:65–80CrossRefGoogle Scholar
  4. Cui P, Hu Y, Zheng M, Wei C (2018) Enhancement of visible-light photocatalytic activities of BiVO4 coupled with g-C3N4 prepared using different precursors. Environ Sci Pollut Res Int 25:32466–32477CrossRefGoogle Scholar
  5. Deng F, Zhong F, Dionysiou DD (2017) One-step in situ hydrothermal fabrication of octahedral CdS/SnIn4S8 nano-heterojunction for highly efficient photocatalytic treatment of nitrophenol and real pharmaceutical wastewater. J Hazard Mater 340:85–95CrossRefGoogle Scholar
  6. Devi TB, Ahmaruzzaman M, Begum S (2016) A rapid, facile and green synthesis of Ag@AgCl nanoparticles for the effective reduction of 2,4-dinitrophenyl hydrazine. New J Chem 40:1497–1506CrossRefGoogle Scholar
  7. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  8. Ganeshraja AS, Zhu K, Nomura K, Wang J (2018) Hierarchical assembly of AgCl@Sn-TiO2 microspheres with enhanced visible light photocatalytic performance. Appl Surf Sci 441:678–687CrossRefGoogle Scholar
  9. Gondal MA, Chang XF, Yamani ZH (2010) UV-light induced photocatalytic decolorization of Rhodamine 6G molecules over BiOCl from aqueous solution. Chem Eng J 165:250–257CrossRefGoogle Scholar
  10. Guo W, Liu T, Zeng W, Liu D, Chen Y, Wang Z (2011) Gas-sensing property improvement of ZnO by hierarchical flower-like architectures. Mater Lett 65:3384–3387CrossRefGoogle Scholar
  11. Guo J, Shi H, Huang X, Shi H, An Z (2018) AgCl/Ag3PO4: a stable Ag-Based nanocomposite photocatalyst with enhanced photocatalytic activity for the degradation of parabens. J Colloid Interface Sci 515:10–17CrossRefGoogle Scholar
  12. Hanmant Gaikwad S, Koratti A, Porel Mukherjee S (2019) Facile tuning of Ag@AgCl cubical hollow nanoframes with efficient sunlight-driven photocatalytic activity. Appl Surf Sci 465:413–419CrossRefGoogle Scholar
  13. Hsu CL, Lien CW, Wang CW, Harroun SG, Huang CC, Chang HT (2016) Immobilization of aptamer-modified gold nanoparticles on BiOCl nanosheets: tunable peroxidase-like activity by protein recognition. Biosens Bioelectron 75:181–187CrossRefGoogle Scholar
  14. Huang H et al (2017) Insights into enhanced visible light photocatalytic activity of t-Se nanorods/BiOCl ultrathin nanosheets 1D/2D heterojunctions. Chem Eng J 338:218–229CrossRefGoogle Scholar
  15. Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638CrossRefGoogle Scholar
  16. Jing J, Lizhi Z (2011) Rapid microwave-assisted nonaqueous synthesis and growth mechanism of AgCl/Ag, and its daylight-driven plasmonic photocatalysis. Chem-Eur J 17:3710–3717CrossRefGoogle Scholar
  17. Jing L et al (2006) Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol Energ Mat Sol C 90:1773–1787CrossRefGoogle Scholar
  18. Kadeer K, Okitsu K, Abulizi A (2018) Sonochemical preparation and photocatalytic properties of CdS QDs/Bi2WO6 3D heterojunction. Ceram Int 44(12):13797–13805CrossRefGoogle Scholar
  19. Khoh WH, Hong JD (2013) Layer-by-layer self-assembly of ultrathin multilayer films composed of magnetite/reduced graphene oxide bilayers for supercapacitor application. Colloid Surface A 436:104–112CrossRefGoogle Scholar
  20. Lang X, Li-Ping J, Jun-Jie Z (2009) Sonochemical synthesis and photocatalysis of porous Cu2O nanospheres with controllable structures. Nanotechnology 20:045605CrossRefGoogle Scholar
  21. Lei Y, Wang G, Song S, Fan W, Zhang H (2009) Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties. Crystengcomm 11:1857–1862CrossRefGoogle Scholar
  22. Li H, Li J, Ai Z, Jia F, Zhang L (2018) Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives. Angew Chem Int Ed 57:122–138CrossRefGoogle Scholar
  23. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921CrossRefGoogle Scholar
  24. Liu J, Xu H, Xu Y, Song Y, Lian J, Zhao Y, Wang L, Huang L, Ji H, Li H (2017) Graphene quantum dots modified mesoporous graphite carbon nitride with significant enhancement of photocatalytic activity. Appl Catal B Environ 207:429–437CrossRefGoogle Scholar
  25. Liu H, Zhang ZG, He HW, Wang XX, Zhang J, Zhang QQ, Tong YF, Liu HL, Ramakrishna S, Yan SY, Long YZ (2018) One-step synthesis heterostructured g-C3N4/TiO2 composite for rapid degradation of pollutants in utilizing visible light. Nanomaterials (Basel) 8:842CrossRefGoogle Scholar
  26. Lu J, Liu M, Zhou S, Zhou X, Yang Y (2017) Electrospinning fabrication of ZnWO4 nanofibers and photocatalytic performance for organic dyes. Dyes Pigments 136:1–7CrossRefGoogle Scholar
  27. Maimaitizi H, Kadeer K, Reheman A, Talifu D, Tursun Y, Abulizi A (2019) Enhanced photocatalytic performance of sphere-like AgCl/rGO catalysts under simulated and natural sunlight irradiation. Mater Sci Semicond Process 90:151–161CrossRefGoogle Scholar
  28. Marschall R (2014) Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv Funct Mater 24:2421–2440CrossRefGoogle Scholar
  29. Meng H, Wang T, Yu X, Zhu Y, Zhang Y (2015) BiOCl/SnS2 hollow spheres for the photocatalytic degradation of waste water. RSC Adv 5:107088–107097CrossRefGoogle Scholar
  30. Miao X et al (2017) Nitrogen-doped carbon dots modified Ag3PO4/GO photocatalyst with excellent visible-light-driven photocatalytic performance and mechanism insight. Catal Sci Tech 8:632–641CrossRefGoogle Scholar
  31. Mohamed SH, El-Hagary M, Althoyaib S (2012) Photocatalytic and optical properties of nanocomposite TiO2-ZnO thin films. Eur Phys J Appl Phys 57:20301CrossRefGoogle Scholar
  32. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C 13:169–189CrossRefGoogle Scholar
  33. Oh SH, Park JS, Min SJ, Yun CK, Cho JS (2018) Design and synthesis of tube-in-tube structured NiO nanobelts with superior electrochemical properties for lithium-ion storage. Chem Eng J 347:889–899CrossRefGoogle Scholar
  34. Panchal P, Malik R, Paul DR, Meena P, Tomer VK, Nehra SP (2019) Photocatalytic activity of green synthesized AgCl nanoparticles towards E. coli bacteria. J Nanosci Nanotechnol 19:5249–5255CrossRefGoogle Scholar
  35. Pandit B, Dhakate SR, Singh BP, Sankapal BR (2017) Free-standing flexible MWCNTs bucky paper: extremely stable and energy efficient supercapacitive electrode. Electrochim Acta 249:395–403CrossRefGoogle Scholar
  36. Penn RL, Banfield JF (1998) Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281:969–971CrossRefGoogle Scholar
  37. Rosales M, Zoltan T, Yadarola C, Mosquera E, Gracia F, García A (2019) The influence of the morphology of 1D TiO2 nanostructures on photogeneration of reactive oxygen species and enhanced photocatalytic activity. J Mol Liq 281:59–69CrossRefGoogle Scholar
  38. Shi Y, Xiong X, Ding S, Liu X, Jiang Q, Hu J (2017) In-situ topotactic synthesis and photocatalytic activity of plate-like BiOCl/2D networks Bi2S3 heterostructures. Appl Catal B Environ 220:570–580CrossRefGoogle Scholar
  39. Stephenson J, Celorrio V, Tiwari D, Hall SR, Green DC, Fermín DJ (2018) Photoelectrochemical properties of BiOCl microplatelets. J Electroanal Chem 819:171–177CrossRefGoogle Scholar
  40. Sun L, Zhang R, Wang Y, Chen W (2014) Plasmonic Ag@AgCl nanotubes fabricated from copper nanowires as high-performance visible light photocatalyst. ACS Appl Mater Interfaces 6:14819–14826CrossRefGoogle Scholar
  41. Tauc J (1966) Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 3:37–46CrossRefGoogle Scholar
  42. Wainfan N (1957) Photolytic behavior of AgCl. Phys Rev 105:100–102CrossRefGoogle Scholar
  43. Wang P, Huang B, Qin X, Zhang X, Dai Y, Wei J, Whangbo MH (2010) Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew Chem Int Ed 47:7931–7933CrossRefGoogle Scholar
  44. Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43:5234–5244CrossRefGoogle Scholar
  45. Wang H, Lang X, Hao R, Guo L, Li J, Wang L, Han X (2016) Facet-defined AgCl nanocrystals with surface-electronic-structure-dominated photoreactivities. Nano Energy 19:8–16CrossRefGoogle Scholar
  46. Wang L, Xie Y, Liu W, Wang Q, Cao W (2018a) Synthesis of mesoporous core-shell TiO2 microstructures with coexposed {001}/{101} facets: enhanced intrinsic photocatalytic performance. Environ Sci Pollut R 25:31250–31261CrossRefGoogle Scholar
  47. Wang Q, Sun K, Lu Q, Wei M, Yao L, Guo E (2018b) Synthesis of novel elm branch-like hierarchical γ-Bi2MoO6 nanostructures with enhanced visible-light-driven photocatalytic performance. Dyes Pigments 155:194–201CrossRefGoogle Scholar
  48. Wen XJ, Niu CG, Huang DW, Zhang L, Liang C, Zeng GM (2017) Study of the photocatalytic degradation pathway of norfloxacin and mineralization activity using a novel ternary Ag/AgCl-CeO2 photocatalyst. J Catal 355:73–86CrossRefGoogle Scholar
  49. Wu J, Zhou Y, Nie W, Chen P (2018) One-step synthesis of Ag2S/Ag@MoS2 nanocomposites for SERS and photocatalytic applications. J Nanopart Res 20(7)Google Scholar
  50. Yang ZM, Tian Y, Huang GF, Huang WQ, Liu YY, Jiao C, Wan Z, Yan XG, Pan A (2014) Novel 3D flower-like Ag3PO4 microspheres with highly enhanced visible light photocatalytic activity. Mater Lett 116:209–211CrossRefGoogle Scholar
  51. Yang XY, Chen LH, Li Y, Rooke JC, Sanchez C, Su BL (2017) Hierarchically porous materials: synthesis strategies and structure design. Chem Soc Rev 46:481–558CrossRefGoogle Scholar
  52. Ye L, Liu J, Gong C, Tian L, Peng T, Zan L (2012) Two different roles of metallic Ag on Ag/AgX/BiOX(X=Cl,Br) visible light photocatalysts: surface plasmon resonance and Z-scheme bridge. ACS Catal 2:1677–1683CrossRefGoogle Scholar
  53. Zhang X, Ai Z, Jia F, Zhang L (2008) Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX(X=Cl, Br, I) nanoplate microspheres. J Phys Chem C 112:747–753CrossRefGoogle Scholar
  54. Zhang LW, Fu HB, Zhu YF (2010a) Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Adv Funct Mater 18:2180–2189CrossRefGoogle Scholar
  55. Zhang S, Song H, Guo P, Zhou J, Chen X (2010b) Formation of carbon nanoparticles from soluble graphene oxide in an aqueous solution. Carbon 48:4211–4214CrossRefGoogle Scholar
  56. Zhang H, Lu Y, Liu H, Fang J (2015) One-pot synthesis of high-index faceted AgCl nanocrystals with trapezohedral, concave hexoctahedral structures and their photocatalytic activity. Nanoscale 7:11591–11601CrossRefGoogle Scholar
  57. Zhao K, Zhang L, Wang J, Li Q, He W, Yin JJ (2013) Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets. J Am Chem Soc 135:15750–15753CrossRefGoogle Scholar
  58. Zhao S, Zhang Y, Zhou Y, Qiu K, Zhang C, Fang J, Sheng X (2017) Reactable polyelectrolyte-assisted preparation of flower-like Ag/AgCl/BiOCl composite with enhanced photocatalytic activity. J Photoch Photobio A 350:94–102CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hujiabudula Maimaitizi
    • 1
  • Kuerbangnisha Kadeer
    • 1
  • Abulajiang Reheman
    • 1
  • Dilinuer Talifu
    • 1
  • Yalkunjan Tursun
    • 1
  • Abulikemu Abulizi
    • 1
    Email author
  1. 1.Key Laboratory of Coal Conversion & Chemical Engineering Process (Xinjiang Uyghur Autonomous Region), College of Chemistry and Chemical EngineeringXinjiang UniversityXinjiangPeople’s Republic of China

Personalised recommendations