Environmental Science and Pollution Research

, Volume 26, Issue 19, pp 19632–19645 | Cite as

Agricultural and domestic pesticides in house dust from different agricultural areas in France

  • Rémi BérangerEmail author
  • Elise Billoir
  • John R. Nuckols
  • Jeffrey Blain
  • Maurice Millet
  • Marie-Laure Bayle
  • Bruno Combourieu
  • Thierry Philip
  • Joachim Schüz
  • Beatrice Fervers
Research Article


Pesticides have been associated with various pathologies, and there is growing evidence of pesticide presence in domestic environments. However, most available studies focused on a limited number of pesticides or households, and few have been conducted in Europe. We aimed to assess indoor pesticide contamination by screening the prevalence of 276 pesticides and ten pesticide metabolites, in French households from different agricultural and urban areas. We sampled indoor dust from 239 households in 2012, proximate to orchards (n = 69), cereals (n = 66) and vineyard (n = 68) crops, or from urban area (n = 36). we used cellulose wipes moistened with isopropanol and polypropylene dust traps to collect recent (7 and 30 days, respectively) and settled dust (> 6 months). Overall, 125 pesticides and piperonyl butoxide were detected at least once in households, mostly at low prevalence: 97 in recent dust, and 111 in settled dust. In recent dust, the most prevalent compounds were o-phenylphenol (168 households, 70%), pentachlorophenol (86, 36%), and piperonyl butoxide (82, 34%). In addition to agricultural pesticides, we found a high proportion of domestic and banned compounds in recent and settled house dust. Several pesticides were identified in house dust, from different pesticide groups and sources. Our results suggest that domestic usage and persistence of banned pesticides may contribute substantially to indoor pesticide contamination.

Graphical abstract

97 pesticides detected in households’ recent indoor dust.


Pesticides Dust Agriculture Gardening Airborne contamination 



Departmental Agricultural Chambers




General Directorate of Customs and Excise


Regional Directorate for Food, Agriculture and Forestry


geographic information systems


piperonyl butoxide


polychlorinated biphenyls


principal coordinate analyses


recent dust samples


settled dust samples


surface loading



The authors acknowledge Elodie Faure (Centre Léon Bérard) for the GIS analyses, Kevin Saout for collecting part of the samples, and Helen Bailey (IARC) for proof-reading; Guy Le Henaf (IRSTEA); all the volunteers that participated to the study; and the departmental agricultural chambers, the farmers, and the pesticide vendors that participate to the study.

Authors’ contribution

RB, JB, JS, and FB drafted the study protocol, with the help of JRN. RB and JB participated to the sample collection. MLB and BC supervised the laboratory analyses. EB performed the statistical analyses. MM was involved in the design and the interpretation of the results of the validation study. RB and JB interpreted the main results, with the help of TP, EB, JRN, JS, and BF. RB drafted the manuscript, under the supervision of JS and BF, and with the help of the coauthors. All authors read and approved the final manuscript.


Rémi Béranger held a doctoral grant from the Région Rhône-Alpes. This project was granted by the Fondation de France (Engt 2011-00023939) and the Région Rhône-Alpes (ref. 12-021795-01 and ref. 14-02516301-CLB001).

Compliance with ethical standards

Ethics approval and consent to participate

All participants signed informed consent. No monetary or non-monetary compensation was provided. The study was approved by relevant French authorities (French National Commission of Informatics and Freedom, CNIL—no.1560501v0).

Competing interests

The authors declare they have no competing interests.

Supplementary material

11356_2019_5313_MOESM1_ESM.docx (281 kb)
ESM 1 (DOCX 280 kb)


  1. ANSES (Agence française de sécurité sanitaire de l’environnement et du travail) (2018). Latest version of the index of veterinary medicinal products authorized in France now online. Accessed 7 January 2019
  2. ANSES (2010) Exposition de la population générale aux résidus de pesticides en France: Synthèse etrecommandations du comité d’orientation et de prospective scientifique de l’observatoire des résidus de pesticides, ORP. In French. Accessed 8 January 2019
  3. ATMO Drôme-Ardeche (2010) Suivi des pesticides dans l’air ambiant. Bron, Air Rhône-AlpesGoogle Scholar
  4. Béranger R, Hardy EM, Dexet C, Guldner L, Zaros C, Nougadère A, Metten MA, Chevrier C, Appenzeller BMR (2018) Multiple pesticide analysis in hair samples of pregnant French women: results from the ELFE national birth cohort. Environ Int 120:43–53CrossRefGoogle Scholar
  5. Bernard CE, Berry MR, Wymer LJ, Melnyk LJ (2008) Sampling household surfaces for pesticide residues: comparison between a press sampler and solvent-moistened wipes. Sci Total Environ 389:514–521CrossRefGoogle Scholar
  6. Blanchard O, Glorennec P, Mercier F, Bonvallot N, Chevrier C, Ramalho O, Mandin C, Le Bot B (2014) Semivolatile organic compounds in indoor air and settled dust in 30 French dwellings. Environ Sci Technol 48:3959–3969CrossRefGoogle Scholar
  7. Blanchard O, Mercier F, Ramalho O, Mandin C, Le Bot B, Glorennec P (2013) Measurements of semi-volatile organic compounds in settled dust: influence of storage temperature and duration. Indoor Air 24:125–135CrossRefGoogle Scholar
  8. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New YorkCrossRefGoogle Scholar
  9. Boyle EB, Deziel NC, Specker BL, Collingwood S, Weisel CP, Wright DJ, Dellarco M (2015) Feasibility and informative value of environmental sample collection in the National Children’s Vanguard Study. Environ Res 140:345–353CrossRefGoogle Scholar
  10. Butte W, Heinzow B (2002) Pollutants in house dust as indicators of indoor contamination. Rev Environ Contam Toxicol 175:1–46Google Scholar
  11. California Department of Pesticide Regulation (2010) Summary of pesticide use report data. California Department of Pesticide Regulation, Sacramento, CAGoogle Scholar
  12. Cettier J, Bayle ML, Beranger R, Billoir E, Nuckols JR, Combourieu B, Fervers B (2015) Efficiency of wipe sampling on hard surfaces for pesticides and PCB residues in dust. Sci Total Environ 505:11–21CrossRefGoogle Scholar
  13. Colt JS, Lubin J, Camann D, Davis S, Cerhan J, Severson RK, Cozen W, Hartge P (2004) Comparison of pesticide levels in carpet dust and self-reported pest treatment practices in four US sites. J Expo Anal Environ Epidemiol 14:74–83CrossRefGoogle Scholar
  14. Curwin BD, Hein MJ, Sanderson WT, Nishioka MG, Reynolds SJ, Ward EM, Alavanja MC (2005) Pesticide contamination inside farm and nonfarm homes. J Occup Environ Hyg 2:357–367CrossRefGoogle Scholar
  15. Deziel NC, Colt JS, Kent EE, Gunier RB, Reynolds P, Booth B, Metayer C, Ward MH (2015) Associations between self-reported pest treatments and pesticide concentrations in carpet dust. Environ Health 25:14–27Google Scholar
  16. Deziel NC, Viet SM, Rogers JW, Camann DE, Marker DA, Heikkinen MS, Yau AY, Stout DM, Dellarco M (2011) Comparison of wipe materials and wetting agents for pesticide residue collection from hard surfaces. Sci Total Environ 409:4442–4448CrossRefGoogle Scholar
  17. Deziel NC, Ward MH, Bell EM, Whitehead TP, Gunier RB, Friesen MC, Nuckols JR (2013) Temporal variability of pesticide concentrations in homes and implications for attenuation bias in epidemiologic studies. Environ Health Perspect 121:565–571CrossRefGoogle Scholar
  18. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20CrossRefGoogle Scholar
  19. Edwards RD, Yurkow EJ, Lioy PJ (1998) Seasonal deposition of housedusts onto household surfaces. Sci Total Environ 224:69–80CrossRefGoogle Scholar
  20. Gunier RB, Ward MH, Airola M, Bell EM, Colt J, Nishioka M, Buffler PA, Reynolds P, Rull RP, Hertz A, Metayer C, Nuckols JR (2011) Determinants of agricultural pesticide concentrations in carpet dust. Environ Health Perspect 119:970–976CrossRefGoogle Scholar
  21. INRS (Institut national de recherche et de sécurité) (2017) 3-iodo-2-propynylbutylcarbamate (IPBC). In French. Accessed 8 January 2019
  22. Inserm (Institut national de la santé et de la recherche médicale) (2013) Pesticides: effets sur la santé. [in French]. INSERM, ParisGoogle Scholar
  23. Lioy PJ, Freeman NC, Millette JR (2002) Dust: a metric for use in residential and building exposure assessment and source characterization. Environ Health Perspect 110:969–983CrossRefGoogle Scholar
  24. Mercier F, Glorennec P, Thomas O, LeBot B (2011) Organic contamination of settled house dust, a review for exposure assessment purposes. Environ Sci Technol 45:6716–6727CrossRefGoogle Scholar
  25. Morgan MK, Wilson NK, Chuang JC (2014) Exposures of 129 preschool children to organochlorines, organophosphates, pyrethroids, and acid herbicides at their homes and daycares in North Carolina. Int J Environ Res Public Health 11:3743–3764CrossRefGoogle Scholar
  26. Oksanen J, Blanchet, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Tevens H, Agner H (2012) Vegan: community ecology package. R package[2.0-3].
  27. Quiros-Alcala L, Bradman A, Nishioka M, Harnly ME, Hubbard A, McKone TE, Ferber J, Eskenazi B (2011) Pesticides in house dust from urban and farmworker households in California: an observational measurement study. Environ Health 10:19CrossRefGoogle Scholar
  28. Ritz B, Rull RP (2008) Assessment of environmental exposures from agricultural pesticides in childhood leukaemia studies: challenges and opportunities. Radiat Prot Dosim 132:148–155CrossRefGoogle Scholar
  29. Schantz MM, Lynch JM, Kucklick JR, Poster DL, Stapleton HM, Vander-Pol SS, Wise SA (2007) New standard reference material (SRM) 2585: organic contaminants in house dust to support exposure assessment measurements. Am Lab 39Google Scholar
  30. Stout DM, Bradham KD, Egeghy PP, Jones PA, Croghan CW, Ashley PA, Pinzer E, Friedman W, Brinkman MC, Nishioka MG, Cox DC (2009) American healthy homes survey: a national study of residential pesticides measured from floor wipes. Environ Sci Technol 43:4294–4300CrossRefGoogle Scholar
  31. Tulve NS, Jones PA, Nishioka MG, Fortmann RC, Croghan CW, Zhou JY, Fraser A, Cavel C, Friedman W (2006) Pesticide measurements from the first national environmental health survey of child care centers using a multi-residue GC/MS analysis method. Environ Sci Technol 40:6269–6274CrossRefGoogle Scholar
  32. Ward MH, Lubin J, Giglierano J, Colt JS, Wolter C, Bekiroglu N, Camann D, Hartge P, Nuckols JR (2006) Proximity to crops and residential exposure to agricultural herbicides in Iowa. Environ Health Perspect 114:893–897CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Rémi Béranger
    • 1
    • 2
    • 3
    Email author
  • Elise Billoir
    • 4
    • 5
  • John R. Nuckols
    • 6
    • 7
  • Jeffrey Blain
    • 1
  • Maurice Millet
    • 8
  • Marie-Laure Bayle
    • 4
  • Bruno Combourieu
    • 4
  • Thierry Philip
    • 1
  • Joachim Schüz
    • 2
  • Beatrice Fervers
    • 1
    • 3
    • 9
  1. 1.Department of Cancer and Environment, Centre Léon BérardLyonFrance
  2. 2.Section of Environment and Radiation, International Agency for Research on Cancer (IARC)LyonFrance
  3. 3.Université Claude Bernard Lyon 1LyonFrance
  4. 4.Rovaltain Research CompanyValenceFrance
  5. 5.Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC)Université de LorraineMetzFrance
  6. 6.Colorado State UniversityFort CollinsUSA
  7. 7.Principal, JRN Environmental Health Sciences, LtdNorthUSA
  8. 8.Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES, UMR 7515 CNRS), University of StrasbourgStrasbourgFrance
  9. 9.INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de LyonLyonFrance

Personalised recommendations