Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 19, pp 19705–19718 | Cite as

Induction of resistance in rice plants using bioproducts produced from Burkholderia pyrrocinia BRM 32113

  • Marina Teixeira Arriel-Elias
  • Marcio Vinicius de Carvalho Barros Côrtes
  • Thatyane Pereira de Sousa
  • Amanda Abdallah Chaibub
  • Marta Cristina Corsi de FilippiEmail author
Research Article

Abstract

Leaf blast is the main rice disease in the world causing significant losses in productivity. Blast integrate management (BIM) requires the use of genetic resistance, cultural practices, and chemical control, although for sustainable BIM, the insertion of biological agents may be the fourth component for. The objective of this work was to test three formulations of Burkholderia pyrrocinia (BRM32113) previously selected and to verify the effectiveness in resistance induction and blast control in rice. Two experiments were carried out, in a completely randomized design with three replications, in the greenhouse (E1 and E2). E1 aimed to select the best treatment for suppressing leaf blast severity and activating plant defense mechanisms. It was composed of 8 treatments: (1) formulated 11+ B. pyrrocina × Magnaporthe oryzae; (2) formulated 17+ B. pyrrocina × M. oryzae; (3) formulated 32+ B. pyrrocina × M. oryzae; (4) formulated 11 × M. oryzae; (5) B. pyrrocinia 17 × M. oryzae; (6) formulated 32 × M. oryzae; (7) B. pyrrocina × M. oryzae; (8) M. oryzae; (9) control (water). E2 aimed to investigate the effect of the best treatments, for the promotion of plant growth and suppression of leaf blast by calculating AUDPC. It was composed of 6 treatments: (1) formulated 11+ B. pyrrocina × M. oryzae; (2) formulated 32+ B. pyrrocina × M. oryzae; (3) formulated 11 × M. oryzae; (4) formulated 32 × M. oryzae; (5) B. pyrrocina × M. oryzae; (6) water. And after, we did two assays aimed to localize this biological agent after application at seed, soil, and rice plant. In E1, formulated 11+ B. pyrrocinia and 32+ formulated and B. pyrrocina were the best, suppressing leaf blast by up to 97% and providing the significant increase of the enzymes β-1,3-glucanase, chitinase, phenylalanine ammonia lyase, lipoxygenase, and salicylic acid at 24 h and 48 h after inoculation with M. oryzae. In E2, treatments formulated 11+ B. pyrrocinia, formulated 32+ B. pyrrocinia, and B. pyrrocina provided more significant increases in growth promotion and reduced area under disease progress curve. B. pyrrocinia was detected in the rice plant for 18 days, predominantly in the root system (internal and external). The use of B. pyrrocinia formulations based on sugarcane molasses and glycerol can be an essential strategy for sustainable management. Although all the benefits come from these sustainable formulations, the adoption by commercial biological segment depends on an established formulation process. It seems that all the results showed here by this research will be readily assimilated by startups of the organic segment.

Keywords

Bioproduct Molasses Glycerol Rhizobacteria Leaf blast 

Notes

Acknowledgments

The authors would like to thank the National Council for Scientific and Technological Development (CNPq) for the scholarship

Funding information

This research received financial support from Embrapa.

References

  1. Agência Embrapa de Informação Tecnológica – AGEITEC (2018) Árvore do conhecimento Arroz, mundo. Disponível em: http://www.agencia.cnptia.embrapa.br. Acessado em: 22 de janeiro de 2018
  2. AGROFIT (2018) MAPA-Ministéria da Agricultura Pecuária e Abastecimento. Disponível em: 212 http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Acessado em: 20 jan 2018
  3. Almeida HO, Barbosa MO, Marques AE, Pereira TRA, Júnior MJM, Tessarollo NG, Games PD, Barros EG, Stolf-Moreira R, Marcelino-Guimarães FC, Abdelnoor RV, Pereira PRG, Baracat-Pereira MC (2012) Enzimas marcadoras de indução de resistência diferencialmente reguladas em soja resistente e suscetível à ferrugem-asiática-da-soja. Pesq agropec 47:163–172CrossRefGoogle Scholar
  4. Alunni S, Cipiciani A, Fioroni G, Ottavi L (2003) Mechanisms of inhibition of phenylalanine ammonia-lyase by phenol inhibitors and phenol/glycine synergistic inhibitors. Arch Biochem Biophys 412:170–175CrossRefGoogle Scholar
  5. Apolinário FDB, Pereira GF, Ferreira JP (2012) Biodiesel e Alternativas para utilização da glicerina resultante do processo de produção de biodiesel. Rev Proj divul do Proj Uni Petrobras e IF Fluminense 2:141–146Google Scholar
  6. Arriel-Elias MT, Oliveira MIS, Silva-Lobo VL, Filippi MCC, Babana AH, Conceição EC, Cortes MVCB (2018) Shelf life enhancement of PGPRs using a simple formulation screening method. Afr J Microbiol Res 2018Google Scholar
  7. Axelrod B, Cheesbrough TM, Laakso S (1981) Lipoxygenase from soybean. Methods Enzymol 71:441–451CrossRefGoogle Scholar
  8. Baysal T, Demirdoven A (2007) Lipoxygenase in fruits and vegetables: a review. Enzyme Microb Tech 40:491–496CrossRefGoogle Scholar
  9. Bernesson S (2008) Användningsområden för biprodukterna vid pressning och rapsolja av omförestring - Revista Rapport. Miljö, lantbruk och teknik - Suécia, pp 06–10Google Scholar
  10. Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  11. Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41CrossRefGoogle Scholar
  12. CONAB, Companhia Nacional de Abastecimento (2018) Evolução dos custos de produção de arroz no Brasil. Conab 4:1–20Google Scholar
  13. Corrêa FE (2010) Viabilidade prática de Bacillus subtilis para o controle biológico de Colletotrichum acutatum, agente causal da queda prematura dos frutos cítricos. Dissertação. Pós-graduação em Agroecologia e desenvolvimento Rural, UFSP 56pGoogle Scholar
  14. Côrtes ACAS, Sousa TP, Barros MV, Rodrigues FA, Silva GB, Filippi MCC (2015) Enzyme-induced defense response in the suppression of rice leaf blast (Magnaporthe Oryzae) by silicon fertilization and bioagents. Int J Res Stud Biosci 3:22–32Google Scholar
  15. Delai LS, Alves VM, Grejianin G, Piranha MM, Sereia DAO (2009) Controle Biológico na teoria e na prática: a realidade dos pequenos agricultores da região de Cascavel-PR. Universidade Estadual do Oeste do ParanáGoogle Scholar
  16. Denardin ND, Freire JRJ (2000) Assessment of polymers for the formulation of legume inoculants. World J Microbe Biotech 16:215–217CrossRefGoogle Scholar
  17. DEPEC-Departamento de Pesquisas e Estudos Econômicos (2017) Arroz e produtos 2017-Bradesco. Disponível em: www.economiaemdia.com.br Acessado em: 22 de janeiro de 2018
  18. Diniz MC, Farias KM, Pacheco ACLP, Viana DA, Araújo-Filho R, Lima APS, Costa RB, Oliveira DM (2008) Análise Genômica de Burkholderia mallei e Burkholderia pseudomallei: Dois Patógenos de Primeira Grandeza e de Genomas Surpreendentemente Complexos. Braz J of Hyg and Ani San 2:01–33Google Scholar
  19. Enyedi AJ, Yalpani N, Petal S (1992) Signal molecules in systemic plant resistance to pathogens and pests. In: Cell, Hossain M A, Asada A (1984) Activation of ascorbate peroxidase in spinach chloroplasts on dark addition of hydrogen, vol 70, pp 879–886Google Scholar
  20. Ferraz HGM, Resende RS, Silveira PR, Andrade CCL, Milagres EA, Oliveira JR, Rodrigues FA (2014) Rhizobacteria induces resistance against Fusarium wilt of tomato by increasing the activity of defense enzymes. Plant Prot 73:274–283Google Scholar
  21. Filippi MC, Prabhu AS (2001) Phenotypic virulence analysis of Pyricularia grisea isolates from Brazilian upland rice cultivars. Pesq Agrop Brasileira 36:27–35CrossRefGoogle Scholar
  22. Filippi MCC, Silva GB, Prabhu AS (2007) Indução de resistência à brusone em folhas de arroz por isolados avirulentos de Magnaporthe oryzae. Fitopatol Bras 32:387–392CrossRefGoogle Scholar
  23. Filippi MCC, Silva GB, Silva-lobo VL, Cortes MMCB, Moraes AJG, Prabhu AS (2011) Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biol Control 58:160–166CrossRefGoogle Scholar
  24. Garcia TV, Knaak N, Fiuza LM (2015) Endophytic bactéria as biological control agentes in rice fields. Agri Microbiol Arq Inst Biol, São Paulo v82:1–9Google Scholar
  25. Gerasimova NG, Pridvorova SM, Ozeretskovskaya OL (2005) Role of L-phenylalanine ammonia-lyase in the induced resistance and susceptibility of potato plants. Appl Biochem Microbiol 41:103–105Google Scholar
  26. IRRI, International Rice Research Institute (2018) The rice. Disponível em: http://irri.org/our-impact/increase-food-security. Acessado em: 22 de janeiro de 2018
  27. Junior VES (2011) Avaliação da Eficiência do uso do glicerol, subproduto da produção de biodiesel, na produção de biofertilizantes para aplicação na agricultura. Projeto de Iniciação Científica-FEMA 45 p Google Scholar
  28. Katagiri F, Thilmony R, He SY (2002) The Arabidopsis thalianaPseudomonas syringae interaction. Arabidopsis Book American Soci of Plan Biol 1:1–35Google Scholar
  29. Labanca ERG (2002) Purificação parcial de elicitores presentes em Saccharomyces cerevisiae: atividade como indutores de resistência em pepino (Cucumis sativus) contra Colletotrichum lagenarium e da síntese de gliceolinas em soja (Glycine max). Dissertação. Pós-graduação em Agroecologia e desenvolvimento Rural, UFSP 60pGoogle Scholar
  30. Lee YK, Chen W, Shen H, Han D, Li Y, Jones HDT, Timlin JA, Hu Q (2013) Culturing and analytical measurement techniques. In: Richmond A, HU Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. UK, Oxford, pp 40–56Google Scholar
  31. Lopes MJS, Filho MBD, Castro THR, Filippi MCC, Silva GB (2018) Effect of Pseudomonas fluorescens and Burkholderia pyrrocinia on the growth improvement and physiological responses in Brachiaria brizantha. American J of Plant Sci 9Google Scholar
  32. Luvizotto DM (2008) Caracterização fisiológica de molecular de Burkholderia spp. associadas às raízes de cana-de-açúcar Dissertação apresentada para obtenção de título de mestre em Agronomia. In: Área de concentração: Microbiologia Agrícola. Universidade de São Paulo (USP). Escola Superior de Agricultura “Luiz de Queirz” (ESALQ), Piracicaba, SP 95pGoogle Scholar
  33. Mahenthiralingam E, Vandamme P (2005) Taxonomy and pathogenesis of the Burkholderia cepacia complex. Chron Respir Dis 2:209–217.  https://doi.org/10.1191/1479972305cd053ra CrossRefGoogle Scholar
  34. Marcel, S., R. Sawers, E. Oakeley, H. Angliker and U. Paszkowski (2010) Tissue-adapted invasion strategies of the rice blast fungus Magnaporthe oryzae. Plant Cell, 22(9):3177–3187Google Scholar
  35. Martinez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse CMJ, Pozo MJ, Ton J, van Dam NM, Conrath U (2016) Recognizing plant defense priming. Trends Plant Sci 21:818–822CrossRefGoogle Scholar
  36. Mauch F, Mauch-Mani B, Gaille C, Kull B, Haas D, Reimmann C (2001) Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. Plant J 25:67–77CrossRefGoogle Scholar
  37. Meher HC, Gajbhite VT, Singh GA (2012) Liquid chromatography method for determination of selected amino acids, coenzymes, growth regulators, and vitamins from Cicer arietinum (L.) and Solanum lycopersicum (L.). J AOAC Int 95:1142–1152CrossRefGoogle Scholar
  38. Nascente AS, Filippi MC, Lanna AC, Souza AC, Silva-Lobo VL, Silva GB (2017) Biomass, gas exchange, and nutrient contents in upland rice plants affected by application forms of microorganism growth promoters. Environ Sci Pollut Res 24:2956–2965CrossRefGoogle Scholar
  39. Notteghem JL (1981) Cooperative experiment on horizontal resistance to rice blast. In: Blast and upland rice: report and recommendations from the meeting for international collaboration in upland rice improvement. IRRI, Los Baños, pp 43–51Google Scholar
  40. Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33:197–2017CrossRefGoogle Scholar
  41. Oliveira SC, Castroagudin VL, Maciel JLN, Pereira DAS, Ceresini PC (2015) Cross-resistance to QoI fungicides azoxystrobin and pyraclostrobin in the wheat blast pathogen Pyricularia oryzae in Brazil. Summa Phytopathol 41:298–304CrossRefGoogle Scholar
  42. Ou SH (1985) Rice diseases. CAB International, Wallingford, UKGoogle Scholar
  43. Paes LSOP (2015) Diofertilizantes e defensivos naturais na agricultura orgânica - Receitas e recomendações. Petrobrás, AntoninaGoogle Scholar
  44. Pan SQ, Ye XS, Kuc J (1991) Association of a β-1,3-glucanase activity and isoform pattern with systemic resistance to blue mold in tobacco-induced by stem injection with Peronospora tabacina or leaf inoculation with tobacco mosaic virus. Physiol Mol Plant Pathol 39:25–39CrossRefGoogle Scholar
  45. Parzianello FR (2012) Uso de polímeros em formulações para armazenamento de Trichoderma hharzianum E Trichoderma viride. Dissertação. Pós-Graduação em Agrobiologia. UFSM, RSGoogle Scholar
  46. Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopatol 52:347–375CrossRefGoogle Scholar
  47. Prabhu AS, Filippi MC (2006) Brusone em arroz: controle genética, progresso e perspectivas. Santo Antônio de Goiás, EmbrapaGoogle Scholar
  48. Prabhu AS, Filippi MC, Silva GB, Silva-Lobo VL, Morais OP (2009) An unprecedented outbreak of rice blast on a newly released cultivar BRS Colosso in Brazil. In: Wang GL, Valent B (eds) Advances in genetics, genomics, and control of rice blast. Springer Science, Netherlands, pp 257–267CrossRefGoogle Scholar
  49. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for tatistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 13 Feb 2019
  50. Ren JH, Ye JR, Liu H, Xu LX, Wu QX (2011) Isolation and characterization of a new Burkholderia pyrrocinia strain JK-SH007 as a potential biocontrol agent. World J Microbiol Biotec 27:2203–2215CrossRefGoogle Scholar
  51. Rodrigues RC (2005) Condições de cultura para produção de Poli(3-HIDROXIBUTIRATO) por Ralstonia eutropha a partir de resíduos de indústrias de alimentos. Dissertação. Pós-graduação em Eng Alimentos,UFSC 100pGoogle Scholar
  52. Saikia S, Parker EJ, Koulman A, Scott B (2006) Four gene products are required for the fungal synthesis of the indole-diterpene, paspaline. FEBS Lett 580:1625–1630CrossRefGoogle Scholar
  53. Schisler DA, Slininger PJ, Behle RW, Jackson MA (2004) Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267–1271CrossRefGoogle Scholar
  54. Shaner G, Finney RF (1977) The effects of nitrogen fertilization on the expression slow-mildewing in Knox wheat. Phytopathology 67:1051–1055CrossRefGoogle Scholar
  55. Silva-lobo VL, Filippi MCC, Silva GB, Venancio WL, Prabhu AS (2012) Relação entre o teor de clorofila nas folhas e a severidade de brusone nas panículas em arroz de terras altas. GoiâniaGoogle Scholar
  56. Silverman RP, Seskar M, Kanter D, Schweizer P, Métraux JP, Raskin I (1995) Salicylic acid Biosynt hesis, Conjugat ion, in Rice' and possible. Plant Physiol 108:633–639CrossRefGoogle Scholar
  57. Siqueira APP, Siqueira MFB (2013) Bokashi, adubo orgânico fermentado. Progr Rio Rural-Man téc 392 40:1–16Google Scholar
  58. Sousa TP, Souza ACA, Cortes MVCB, Lanna AC, Pinheiro HA, Filippi MCC, Silva GB (2017) Bioagents and silicon promoting fast early upland rice growth. Environ Sci Pollut Res 25:3657–3668.  https://doi.org/10.1007/s11356-017-0753-0 CrossRefGoogle Scholar
  59. Sperandio EM, Vale HMM, Reis MS, Cortes MVCBC, Lanna AC, Filippi MCC (2017) Evaluation of rhizobacteria in upland rice in Brazil: growth promotion and interaction of induced defense responses against leaf blast (Magnaporthe oryzae). Acta Physiol Plant 39:258–270CrossRefGoogle Scholar
  60. Vimal SR, Singh JS, Arora NK, Singh S (2017) Soil plant-microbe interactions in stressed agriculture management: a review. Pedosphere 27:177–192CrossRefGoogle Scholar
  61. Wu CT, Bradford KJ (2003) Class I chitinase and beta-1,3-glucanase are differentially regulated by wounding, methyl jasmonate, ethylene, and gibberellin in tomato seeds and leaves. Plant Physiol 133:263–273CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Marina Teixeira Arriel-Elias
    • 1
  • Marcio Vinicius de Carvalho Barros Côrtes
    • 2
  • Thatyane Pereira de Sousa
    • 1
  • Amanda Abdallah Chaibub
    • 3
  • Marta Cristina Corsi de Filippi
    • 2
    Email author
  1. 1.Goiás Federal UniversityGoiâniaBrazil
  2. 2.Phytopathology Laboratory (Laboratório de Fitopatologia)Brazilian Enterprise for Agricultural Research-Rice and Beans (Embrapa Arroz e Feijão)GoiâniaBrazil
  3. 3.University of BrasíliaBrasíliaBrazil

Personalised recommendations