Environmental Science and Pollution Research

, Volume 26, Issue 18, pp 18651–18661 | Cite as

Effectiveness of China’s protected areas in reducing deforestation

  • Hongbo Yang
  • Andrés Viña
  • Julie Ann Winkler
  • Min Gon Chung
  • Yue Dou
  • Fang Wang
  • Jindong ZhangEmail author
  • Ying Tang
  • Thomas Connor
  • Zhiqiang Zhao
  • Jianguo LiuEmail author
Research Article


Protected areas (PAs) are considered a cornerstone of biodiversity conservation, and the number and extent of PAs are expanding rapidly worldwide. While designating more land as PAs is important, concerns about the degree to which existing PAs are effective in meeting conservation goals are growing. Unfortunately, conservation effectiveness of PAs and its underlying determinants are often unclear across large spatial scales. Using PAs in China as an example, we evaluated the effectiveness of 472 PAs established before 2000 in reducing deforestation between 2000 and 2015. Our results show that the majority (71%) of the PAs were effective in reducing deforestation. Without their establishment, deforestation within the PAs would have increased by about 50% (581 km2), with about 1271 megaton of carbon per year not being sequestered. We also found some attributes of PAs, including surrounding deforestation level, roughness of terrain, and travel time to the nearest city, are significantly related to their effectiveness in reducing deforestation. Our findings highlight the need of systematically evaluating the effectiveness of PAs and incorporating this effectiveness into conservation planning and management to more fully realize the goals of PAs not only in China but also around the world.


Ecological performance Nature reserves Deforestation Carbon Conservation planning 



We thank the anonymous reviewers for their constructive comments on an earlier draft of the manuscript.

Funding information

This study was funded by the US National Science Foundation (# 130313), Michigan AgBioResearch, Environmental Science and Policy Program at Michigan State University and the National Natural Science Foundation of China (#41571517).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abadie A, Imbens G (2006) Large sample properties of matching estimators for average treatment effects. Econometrica 74:235–267. CrossRefGoogle Scholar
  2. Ament J, Cumming G (2016) Scale dependency in effectiveness, isolation, and social-ecological spillover of protected areas. Conserv Biol 30:846–855. CrossRefGoogle Scholar
  3. Andam K, Ferraro P, Pfaff A, Sanchez-Azofeifa G, Robalino JA (2008) Measuring the effectiveness of protected area networks in reducing deforestation. Proc Natl Acad Sci U S A 105:16089–16094. CrossRefGoogle Scholar
  4. Babcock R et al (2010) Decadal trends in marine reserves reveal differential rates of change in direct and indirect effects. Proc Natl Acad Sci U S A 107:18256–18261. CrossRefGoogle Scholar
  5. Baldi G, Texeira M, Martin OA, Grau HR, Jobbágy EG (2017) Opportunities drive the global distribution of protected areas. PeerJ 5:e2989. CrossRefGoogle Scholar
  6. Boori M, Voženílek V, Burian J (2014) Land cover disturbance due to tourism in Czech Republic. In: Proceedings of the Fifth International Conference on Innovations in Bio-Inspired Computing and Applications IBICA 2014. Springer, pp 63–72.
  7. Brodie J, Waterhouse J (2012) A critical review of environmental management of the ‘not so Great’ Barrier. Estuar Coast Shelf Sci 104:1–22. CrossRefGoogle Scholar
  8. Bruner AG, Gullison RE, Rice RE, da Fonseca GAB (2001) Effectiveness of parks in protecting tropical biodiversity. Science 291:125–128. CrossRefGoogle Scholar
  9. Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque JF, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Morcillo MH, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vie JC, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168. CrossRefGoogle Scholar
  10. Cao M, Peng L, Liu S (2015) Analysis of the network of protected areas in China based on a geographic perspective: current status, issues and integration. Sustainability 7(11):15617–15631. CrossRefGoogle Scholar
  11. Chen Y (2015) Catalogue of life China: 2015 annual checklist. Science Press, Beijing. Google Scholar
  12. Coetzee B (2017) Evaluating the ecological performance of protected areas. Biodivers Conserv 26:231–236. CrossRefGoogle Scholar
  13. Craigie I, Baillie J, Balmford A, Carbone C, Collen B, Green R, Hutton J (2010) Large mammal population declines in Africa’s protected areas. Biol Conserv 143:2221–2228. CrossRefGoogle Scholar
  14. Dai L, Wang Y, Lewis BJ, Xu D, Zhou L, Gu X, Jiang L (2012) The trend of land-use sustainability around the Changbai Mountain Biosphere Reserve in northeastern China: 1977–2007. Int J Sust Dev World Ecol 19:369–377. CrossRefGoogle Scholar
  15. Deng JS, Wang K, Hong Y, Qi JG (2009) Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landsc Urban Plan 92:187–198. CrossRefGoogle Scholar
  16. Di Franco A et al (2016) Five key attributes can increase marine protected areas performance for small-scale fisheries management. Sci Rep 6:38135. CrossRefGoogle Scholar
  17. Di Minin E, Toivonen T (2015) Global protected area expansion: creating more than paper parks. Bioscience 65:637–638. CrossRefGoogle Scholar
  18. Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. CrossRefGoogle Scholar
  19. Geldmann J, Coad L, Barnes M, Craigie ID, Hockings M, Knights K, Leverington F, Cuadros IC, Zamora C, Woodley S, Burgess ND (2015) Changes in protected area management effectiveness over time: a global analysis. Biol Conserv 191:692–699. CrossRefGoogle Scholar
  20. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853. CrossRefGoogle Scholar
  21. Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotić A, Shangguan W, Wright MN, Geng X, Bauer-Marschallinger B, Guevara MA, Vargas R, MacMillan RA, Batjes NH, Leenaars JGB, Ribeiro E, Wheeler I, Mantel S, Kempen B (2017) SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12:e0169748. CrossRefGoogle Scholar
  22. Hockings M (2006) Evaluating effectiveness: a framework for assessing management effectiveness of protected areas. IUCNGoogle Scholar
  23. Hull V, Xu W, Liu W, Zhou S, Viña A, Zhang J, Tuanmu MN, Huang J, Linderman M, Chen X, Huang Y, Ouyang Z, Zhang H, Liu J (2011) Evaluating the efficacy of zoning designations for protected area management. Biol Conserv 144:3028–3037. CrossRefGoogle Scholar
  24. IUCN and UNEP-WCMC (2017) World Database on Protected Areas (WDPA): June 2017 IUCN and UNEP-WCMCGoogle Scholar
  25. IUCN World Park Congress (2014) A strategy of innovative approaches and recommendations to reach conservation goals in the next decade, SydneyGoogle Scholar
  26. Joppa LN, Pfaff A (2009) High and far: biases in the location of protected areas. PLoS One 4:e8273. CrossRefGoogle Scholar
  27. Joppa LN, Pfaff A (2011) Global protected area impacts. Proc R Soc Lond B Biol Sci 278:1633–1638. CrossRefGoogle Scholar
  28. Krejcie R, Morgan D (1970) Determining sample size for research activities. Educ Psychol Meas 30:607–610. CrossRefGoogle Scholar
  29. Leverington F, Costa K, Pavese H, Lisle A, Hockings M (2010) A global analysis of protected area management effectiveness. Environ Manag 46:685–698. CrossRefGoogle Scholar
  30. Li J, Wang W, Axmacher JC, Zhang Y, Zhu Y (2016) Streamlining China’s protected areas. Science 351:1160. Google Scholar
  31. Liu J, Raven P (2010) China’s environmental challenges and implications for the world. Crit Rev Environ Sci Technol 40:823–851. CrossRefGoogle Scholar
  32. Liu J, Linderman M, Ouyang Z, An L, Yang J, Zhang H (2001) Ecological degradation in protected areas: the case of Wolong Nature Reserve for giant pandas. Science 292:98–101. CrossRefGoogle Scholar
  33. Liu J, Li S, Ouyang Z, Tam C, Chen X (2008) Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc Natl Acad Sci U S A 105:9477–9482. CrossRefGoogle Scholar
  34. Liu J, Mooney H, Hull V, Davis SJ, Gaskell J, Hertel T, Lubchenco J, Seto KC, Gleick P, Kremen C, Li S (2015) Systems integration for global sustainability. Science 347:1258832. CrossRefGoogle Scholar
  35. Marthews T, Dadson S, Lehner B, Abele S, Gedney N (2015) High-resolution global topographic index values for use in large-scale hydrological modelling. Hydrol Earth Syst Sci 19:91–104. CrossRefGoogle Scholar
  36. Mascia M, Pailler S (2011) Protected area downgrading, downsizing, and degazettement (PADDD) and its conservation implications. Conserv Lett 4:9–20CrossRefGoogle Scholar
  37. Melillo J, Lu X, Kicklighter D, Reilly J, Cai Y, Sokolov A (2016) Protected areas’ role in climate-change mitigation. Ambio 45:133–145. CrossRefGoogle Scholar
  38. Moore I, Gessler P, Nielsen G, Peterson G (1993) Soil attribute prediction using terrain analysis. Soil Sci Soc Am J 57:443–452. CrossRefGoogle Scholar
  39. Nelson A (2008) Travel time to major cities: a global map of accessibility.
  40. Oliveira P et al (2007) Land-use allocation protects the Peruvian Amazon. Science 317:1233–1236. CrossRefGoogle Scholar
  41. Ouyang Z, Zheng H, Xiao Y, Polasky S, Liu J, Xu W, Wang Q, Zhang L, Xiao Y, Rao E, Jiang L, Lu F, Wang X, Yang G, Gong S, Wu B, Zeng Y, Yang W, Daily GC (2016) Improvements in ecosystem services from investments in natural capital. Science 352:1455–1459. CrossRefGoogle Scholar
  42. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  43. Rodrigues A et al (2004) Effectiveness of the global protected area network in representing species diversity. Nature 428:640–643. CrossRefGoogle Scholar
  44. Rosenbaum P, Rubin D (1983) The central role of the propensity score in observational studies for causal effects. Biometrika 70:41–55. CrossRefGoogle Scholar
  45. Rubin D (1973) Matching to remove bias in observational studies. Biometrics 29:159–183. CrossRefGoogle Scholar
  46. Sala E, Giakoumi S (2017) No-take marine reserves are the most effective protected areas in the ocean. ICES J Mar Sci 75:1166–1168. CrossRefGoogle Scholar
  47. Sekhon J (2011) Multivariate and propensity score matching software with automated balance optimization: the matching package for R. J Stat Softw 47:1–52. Google Scholar
  48. Stuart E (2010) Matching methods for causal inference: a review and a look forward. Stat Sci 25:1–22. CrossRefGoogle Scholar
  49. The Forest Resources Assessment Programme (2015) FRA 2015 terms and definitions. Food and Agriculture Organization of the United Nations, Rome ItalyGoogle Scholar
  50. UNEP-WCMC, IUCN (2016) Protected Planet Report 2016. UNEP-WCMC and IUCN, Cambridge UK and Gland, SwitzerlandGoogle Scholar
  51. Venter O, Fuller RA, Segan DB, Carwardine J, Brooks T, Butchart SHM, di Marco M, Iwamura T, Joseph L, O'Grady D, Possingham HP, Rondinini C, Smith RJ, Venter M, Watson JEM (2014) Targeting global protected area expansion for imperiled biodiversity. PLoS Biol 12:e1001891. CrossRefGoogle Scholar
  52. Viña A, Liu J (2017) Hidden roles of protected areas in the conservation of biodiversity and ecosystem services. Ecosphere 8, e01864-n/a.
  53. Viña A, Tuanmu M-N, Xu W, Li Y, Ouyang Z, DeFries R, Liu J (2010) Range-wide analysis of wildlife habitat: implications for conservation. Biol Conserv 143:1960–1969. CrossRefGoogle Scholar
  54. Viña A, McConnell W, Yang H, Xu Z, Liu J (2016) Effects of conservation policy on China’s forest recovery. Sci Adv 2:e1500965. CrossRefGoogle Scholar
  55. Wang G, Innes J, Lei J, Dai S, Wu S (2007) China’s forestry reforms. Science 318:1556–1557. CrossRefGoogle Scholar
  56. Watson J, Dudley N, Segan D, Hockings M (2014) The performance and potential of protected areas. Nature 515:67–73. CrossRefGoogle Scholar
  57. WCS, CIESIN (2005) Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Influence Index (HII) Dataset (Geographic). NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NYGoogle Scholar
  58. Wu R, Zhang S, Yu DW, Zhao P, Li X, Wang L, Yu Q, Ma J, Chen A, Long Y (2011) Effectiveness of China’s nature reserves in representing ecological diversity. Front Ecol Environ 9:383–389. CrossRefGoogle Scholar
  59. Xu J, Melick DR (2007) Rethinking the effectiveness of public protected areas in southwestern China. Conserv Biol 21:318–328. CrossRefGoogle Scholar
  60. Xu W, Viña A, Qi Z, Ouyang Z, Liu J, Liu W, Wan H (2014) Evaluating conservation effectiveness of nature reserves established for surrogate species: case of a giant panda nature reserve in Qinling Mountains. Chin Geogr Sci 24:60–70. CrossRefGoogle Scholar
  61. Xu W, Xiao Y, Zhang J, Yang W, Zhang L, Hull V, Wang Z, Zheng H, Liu J, Polasky S, Jiang L, Xiao Y, Shi X, Rao E, Lu F, Wang X, Daily GC, Ouyang Z (2017) Strengthening protected areas for biodiversity and ecosystem services in China. Proc Natl Acad Sci U S A 114:1601–1606. CrossRefGoogle Scholar
  62. Yang H, Viña A, Tang Y, Zhang J, Wang F, Zhao Z, Liu J (2017) Range-wide evaluation of wildlife habitat change: a demonstration using Giant pandas. Biol Conserv 213:203–209. CrossRefGoogle Scholar
  63. Yang H, Dietz T, Yang W, Zhang J, Liu J (2018) Changes in human well-being and rural livelihoods under natural disasters. Ecol Econ 151:184–194. CrossRefGoogle Scholar
  64. Yin H, Li C (2001) Human impact on floods and flood disasters on the Yangtze River. Geomorphology 41:105–109. CrossRefGoogle Scholar
  65. Zhang K (2012) Funding shortage in China’s protected areas. In: China Business News Google Scholar
  66. Zhang J, Hull V, Ouyang Z, Li R, Connor T, Yang H, Zhang Z, Silet B, Zhang H, Liu J (2017) Divergent responses of sympatric species to livestock encroachment at fine spatiotemporal scales. Biol Conserv 209:119–129. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Systems Integration and Sustainability, Department of Fisheries and WildlifeMichigan State UniversityEast LansingUSA
  2. 2.Department of GeographyUniversity of North CarolinaChapel HillUSA
  3. 3.Department of Geography, Environment, and Spatial SciencesMichigan State UniversityEast LansingUSA
  4. 4.Key Laboratory of Southwest China Wildlife Resources ConservationChina West Normal University, Ministry of EducationNanchongChina

Personalised recommendations