Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 18, pp 18403–18410 | Cite as

The effect of silver nanoparticles on the mutagenic and the genotoxic properties of the urban wastewater liquid sludges

  • Messaouda Khallef
  • Djamel Eddine Benouareth
  • Muhsin KonukEmail author
  • Recep Liman
  • Sara Bouchelaghem
  • Sara Hazzem
  • Khadra Kerdouci
Research Article
  • 101 Downloads

Abstract

Nanoparticles are very effective compounds to transform and detoxicate common environmental contaminants. For this reason, crude urban liquid wastewater sludges were treated by silver nanoparticles (Ag-NPs, 100 nm) for 24 h. Both Ag-NPs’ treated and untreated sludges were examined for the evaluation if there are possible mutagenic/anti-mutagenic, cytotoxic, and genotoxic/anti-genotoxic effects by Ames and Allium cepa tests. The results were then subjected to statistical analyses by using SPSS software and p < 0.05 was accepted as a significant value. The data obtained from the Ames test showed that while untreated crude liquid sludge had a significant mutagenic effect, Ag-NP-treated one decreased its mutagenicity. Similar effects were also observed in the chromosome aberration-Allium cepa tests. Significant chromosome aberrations observed were C-metaphase, sticky metaphase, sticky anaphase, anaphase bridge, vagrant chromosome, and multipolar anaphases. Both tests demonstrated that silver nanoparticle treatment decreased the major mutagenicity and genotoxicity detected in the liquid wastewater sludges.

Keywords

Wastewater sludges Ag-NPs Ames test Allium cepa test 

Notes

References

  1. Abdel-Azeem EA, Elsayed BA (2013) Phytotoxicity of silver nanoparticles on Vicia faba seedlings. N Y Sci J 6(12):148-156. (ISSN: 1554-0200). http://www.sciencepub.net/newyork.%2024
  2. Abdelsalam NR, Abdel-Megeed A, Ali HM, Salem MZM, al-Hayali MFA, Elshikh MS (2018) Genotoxicity effects of silver nanoparticles on wheat ( Triticum aestivum L.) root tip cells. Ecotoxicol Environ Saf 155:76–85.  https://doi.org/10.1016/j.ecoenv.2018.02.069 CrossRefGoogle Scholar
  3. Adamcová D, Vaverková M (2016) The toxicity of two types of sewage sludge from wastewater treatment plant for plants in Czech Republic. J Ecol Eng 17:33–37.  https://doi.org/10.12911/22998993/62283 CrossRefGoogle Scholar
  4. Aksoy Ö (2017) Detection of environmental mutagens through plant bioassays. In: Yousaf Z (ed) Plant Ecology - Traditional Approaches to Recent Trends. InTech Open, pp:9–23, 2nd chapter,  https://doi.org/10.5772/intechopen.69274
  5. Akyıl D, Eren Y, Konuk M, Tepekozcan A, Sağlam E (2016) Determination of mutagenicity and genotoxicity of indium tin oxide nanoparticles using the Ames test and micronucleus assay. Toxicol Ind Health 32:1720–1728.  https://doi.org/10.1177/0748233715579804 CrossRefGoogle Scholar
  6. Anjum R, Malik A (2012) Mutagenicity assessment of contaminated soil in the vicinity of the industrial area. Environ Monit Assess 184:3013–3026.  https://doi.org/10.1007/s10661-011-2167-7 CrossRefGoogle Scholar
  7. Blevins RD, Brennan LA (1990) Fate of mutagenic activity during conventional treatment of municipal wastewater sludge. Arch Environ Contam Toxicol 19:657–664.  https://doi.org/10.1007/BF01183981 CrossRefGoogle Scholar
  8. Brar SK, Verma M, Tyagi RD, Surampalli RY (2010) Engineered nanoparticles in wastewater and wastewater sludge – evidence and impacts. Waste Manag 30:504–520.  https://doi.org/10.1016/j.wasman.2009.10.012 CrossRefGoogle Scholar
  9. Claxton LD, Houk VS, Hughes TJ (1998) Genotoxicity of industrial wastes and effluents. Mutat Res Mutat Res 410:237–243.  https://doi.org/10.1016/S1383-5742(98)00008-8 CrossRefGoogle Scholar
  10. Cotelle S (1999) Etude de la génotoxicité de matrices complexes à l’aide de plantes supérieures. Ecologie, Environnement. Université Paul Verlaine - MetzGoogle Scholar
  11. Cotelle S, Dhyèvre A, Muller S, Chenon P, Manier N, Pandard P, Echairi A, Silvestre J, Guiresse M, Pinelli E, Giorgetti L, Barbafieri M, Silva VC, Engel F, Radetski CM (2015) Soil genotoxicity assessment—results of an interlaboratory study on the Vicia micronucleus assay in the context of ISO standardization. Environ Sci Pollut Res 22:988–995.  https://doi.org/10.1007/s11356-014-3495-2 CrossRefGoogle Scholar
  12. de Lima R, Seabra AB, Durán N (2012) Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles: Genotoxicity of silver nanoparticles. J Appl Toxicol 32:867–879.  https://doi.org/10.1002/jat.2780 CrossRefGoogle Scholar
  13. de Souza Pohren R, da Costa TC, Vargas VMF (2013) Investigation of sensitivity of the Allium cepa test as an alert system to evaluate the genotoxic potential of soil contaminated by heavy metals. Water Air Soil Pollut 224:10.  https://doi.org/10.1007/s11270-013-1460-1 CrossRefGoogle Scholar
  14. Düring R-A, Gäth S (2002) Utilization of municipal organic wastes in agriculture: where do we stand, where will we go? J Plant Nutr Soil Sci 165:544–556. https://doi.org/10.1002/1522-2624(200208)165:4<544::AID-JPLN544>3.0.CO;2-#Google Scholar
  15. El-Sayed B, El-Ramady H (2016) Nanoparticles in water, soils and agriculture. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in Food and Agriculture 2. Springer International Publishing, Cham, pp 311–358Google Scholar
  16. Firbas P (2013) Allium chromosome aberration test for evaluation effect of cleaning municipal water with constructed wetland (CW) in Sveti Tomaž, Slovenia. J Bioremediation Biodegrad 04.  https://doi.org/10.4172/2155-6199.1000189
  17. Fiskesjö G (2008) The Allium test as a standard in environmental monitoring. Hereditas 102:99–112.  https://doi.org/10.1111/j.1601-5223.1985.tb00471.x CrossRefGoogle Scholar
  18. Grisolia CK, de Oliveira ABB, Bonfim H, Klautau-Guimarães Mde N (2005) Genotoxicity evaluation of domestic sewage in a municipal wastewater treatment plant. Genet Mol Biol 28:334–338.  https://doi.org/10.1590/S1415-47572005000200026 CrossRefGoogle Scholar
  19. Grotto D, Carneiro MFH, Sauer E, Garcia SC, de Melo WJ, Barbosa F Jr (2013) Evaluation of biochemical and redox parameters in rats fed with corn grown in soil amended with urban sewage sludge. Ecotoxicol Environ Saf 95:188–194.  https://doi.org/10.1016/j.ecoenv.2013.05.038 CrossRefGoogle Scholar
  20. Gupta P, Mathur N, Bhatnagar P, Nagar P, Srivastava S (2009) Genotoxicity evaluation of hospital wastewaters. Ecotoxicol Environ Saf 72:1925–1932.  https://doi.org/10.1016/j.ecoenv.2009.05.012 CrossRefGoogle Scholar
  21. Jha S, Pudake RN (2016) Molecular mechanism of plant–nanoparticle interactions. In: Kole C, Kumar DS, Khodakovskaya MV (eds) Plant Nanotechnology. Springer International Publishing, Cham, pp 155–181CrossRefGoogle Scholar
  22. Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 45:3902–3908.  https://doi.org/10.1021/es1041892 CrossRefGoogle Scholar
  23. Karami Mehrian S, De Lima R (2016) Nanoparticles cyto and genotoxicity in plants: mechanisms and abnormalities. Environ Nanotechnol Monit Manag 6:184–193.  https://doi.org/10.1016/j.enmm.2016.08.003 Google Scholar
  24. Kim B, Park C-S, Murayama M, Hochella MF (2010) Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol 44:7509–7514.  https://doi.org/10.1021/es101565j CrossRefGoogle Scholar
  25. Kim HR, Park YJ, Shin DY, Oh SM, Chung KH (2013) Appropriate in vitro methods for genotoxicity testing of silver nanoparticles. Environ Health Toxicol 28:8.  https://doi.org/10.5620/eht.2013.28.e2013003 Google Scholar
  26. Klee N, Gustavsson L, Kosmehl T, Engwall M, Erdinger L, Braunbeck T, Hollert H (2004) Changes in toxicity and genotoxicity of industrial sewage sludge samples containing nitro- and amino-aromatic compounds following treatment in bioreactors with different oxygen regimes. Environ Sci Pollut Res 11:313–320.  https://doi.org/10.1007/BF02979645 CrossRefGoogle Scholar
  27. Kovalchuk O, Kovalchuk I, Arkhipov A, Telyuk P, Hohn B, Kovalchuk L (1998) The Allium cepa chromosome aberration test reliably measures genotoxicity of soils of inhabited areas in Ukraine contaminated by the Chernobyl accident. Mutat Res Toxicol Environ Mutagen 415:47–57.  https://doi.org/10.1016/S1383-5718(98)00053-9 CrossRefGoogle Scholar
  28. Krishnamurthi K, Saravana Devi S, Hengstler JG, Hermes M, Kumar K, Dutta D, Muhil Vannan S, Subin TS, Yadav RR, Chakrabarti T (2008) Genotoxicity of sludges, wastewater and effluents from three different industries. Arch Toxicol 82:965–971.  https://doi.org/10.1007/s00204-008-0380-0 CrossRefGoogle Scholar
  29. Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246.  https://doi.org/10.1016/j.scitotenv.2009.06.024 CrossRefGoogle Scholar
  30. Leme DM, Marin-Morales MA (2009) Allium cepa test in environmental monitoring: a review on its application. Mutat Res Mutat Res 682:71–81.  https://doi.org/10.1016/j.mrrev.2009.06.002 CrossRefGoogle Scholar
  31. Li Y, Chen DH, Yan J, Chen Y, Mittelstaedt RA, Zhang Y, Biris AS, Heflich RH, Chen T (2012) Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. Mutat Res Toxicol Environ Mutagen 745:4–10.  https://doi.org/10.1016/j.mrgentox.2011.11.010 CrossRefGoogle Scholar
  32. Liman R (2013) Genotoxic effects of Bismuth (III) oxide nanoparticles by Allium and Comet assay. Chemosphere 93:269–273.  https://doi.org/10.1016/j.chemosphere.2013.04.076 CrossRefGoogle Scholar
  33. Ma T-H, Xu Z, Xu C, McConnell H, Valtierra Rabago E, Adriana Arreola G, Zhang H (1995) The improved Allium/Vicia root tip micronucleus assay for clastogenicity of environmental pollutants. Mutat Res Mutagen Relat Subj 334:185–195.  https://doi.org/10.1016/0165-1161(95)90010-1 Google Scholar
  34. Ma C, White JC, Xing B, Dhankher OP (2015) Phytotoxicity and ecological safety of engineered nanomaterials. Int J Plant Environ 1.  https://doi.org/10.18811/ijpen.v1i1.7110
  35. Mahaye N, Thwala M, Cowan DA, Musee N (2017) Genotoxicity of metal based engineered nanoparticles in aquatic organisms: a review. Mutat Res Mutat Res 773:134–160.  https://doi.org/10.1016/j.mrrev.2017.05.004 CrossRefGoogle Scholar
  36. Mesi A, Kopliku D (2012) Toxicity evaluation of leachates from some urban wastewater collectors of Shkodra using Allium cepa L. Test. J Int Environmental application & Science 7:907–912Google Scholar
  37. Mielli AC, Matta MEM, Nersesyan A, Saldiva PHN, Umbuzeiro GA (2009) Evaluation of the genotoxicity of treated urban sludge in the Tradescantia micronucleus assay. Mutat Res Toxicol Environ Mutagen 672:51–54.  https://doi.org/10.1016/j.mrgentox.2008.09.007 CrossRefGoogle Scholar
  38. Monarca S, Feretti D, Zerbini I, Alberti A, Zani C, Resola S, Gelatti U, Nardi G (2002) Soil contamination detected using bacterial and plant mutagenicity tests and chemical analyses. Environ Res 88:64–69.  https://doi.org/10.1006/enrs.2001.4317 CrossRefGoogle Scholar
  39. Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res Mol Mech Mutagen 455:29–60.  https://doi.org/10.1016/S0027-5107(00)00064-6 CrossRefGoogle Scholar
  40. Mosquera-Losada MR, Muñoz-Ferreiro N, Rigueiro-Rodríguez A (2010) Agronomic characterisation of different types of sewage sludge: policy implications. Waste Manag 30:492–503.  https://doi.org/10.1016/j.wasman.2009.09.021 CrossRefGoogle Scholar
  41. Mumma RO, Rashid KA, Raupach DC, Shane BS, Scarlet-Kranz JM, Bache CA, Gutenmann WH, Lisk DJ (1988) Mutagens, toxicants, and other constituents in small city siudges in New York State. Arch Environ Contam Toxicol 17:657–663.  https://doi.org/10.1007/BF01055835 CrossRefGoogle Scholar
  42. Özkara A, Akyıl D, Erdoğmuş SF, Konuk M (2011) Evaluation of germination, root growth and cytological effects of wastewater of sugar factory (Afyonkarahisar) using Hordeum vulgare bioassays. Environ Monit Assess 183:517–524.  https://doi.org/10.1007/s10661-011-1936-7 CrossRefGoogle Scholar
  43. Pérez AS, Reifferscheid G, Eichhorn P, Barceló D (2009) Assessment of the mutagenic potency of sewage sludges contaminated with polycyclic aromatic hydrocarbons by an Ames fluctuation assay. Environ Toxicol Chem 22:2576–2584.  https://doi.org/10.1897/02-416 CrossRefGoogle Scholar
  44. Pohren R d S, Costa TC d, Vargas FVM (2013) Investigation of sensitivity of the Allium cepa test as an alert system to evaluate the genotoxic potential of soil contaminated by heavy metals. Water Air Soil Pollut 224:1460.  https://doi.org/10.1007/s11270-013-1460-1 CrossRefGoogle Scholar
  45. Rank J (2003) The method of Allium anaphase-telophase chromosome aberration assay. Ekologija (vilnius) 1:38–42Google Scholar
  46. Rank J, Nielsen M (1998) Genotoxicity testing of wastewater sludge using the Allium cepa anaphase-telophase chromosome aberration assay. Mutat Res Toxicol Environ Mutagen 418:113–119.  https://doi.org/10.1016/S1383-5718(98)00118-1 CrossRefGoogle Scholar
  47. Saha N, Dutta Gupta S (2017) Low-dose toxicity of biogenic silver nanoparticles fabricated by Swertia chirata on root tips and flower buds of Allium cepa. J Hazard Mater 330:18–28.  https://doi.org/10.1016/j.jhazmat.2017.01.021 CrossRefGoogle Scholar
  48. Sahin Z, Koca S (2018) Determination of the genotoxicity of the soil in the Aydın region irrigated by Büyük Menderes River by the Allium test system. Cumhur Sci J:152–161.  https://doi.org/10.17776/csj.405712
  49. Samuel OB, Osuala FI, Odeigah PGC (2010) Cytogenotoxicity evaluation of two industrial effluents using Allium cepa assay. Afr J. Environ Sci Technol 4:021–027Google Scholar
  50. Silva PRP, Barbisan LF, Dagli MLZ, Saldiva PHN (2012) Sewage sludge does not induce genotoxicity and carcinogenesis. Genet Mol Biol 35:657–663.  https://doi.org/10.1590/S1415-47572012005000054 CrossRefGoogle Scholar
  51. Sivry Y (2014) Utilisation des nanoparticules de fer zéro-valent dans le traitement des boues d’épuration : bénéfice ou risque ? Bull Veille Sanit 6Google Scholar
  52. Solano M d LM, de Lima PLA, JFL L et al (2009) In vivo genotoxicity evaluation of a treated urban sewage sludge sample. Mutat Res Toxicol Environ Mutagen 676:69–73.  https://doi.org/10.1016/j.mrgentox.2009.04.002 CrossRefGoogle Scholar
  53. Sommaggio LRD, Mazzeo DEC, Pamplona-Silva MT, Marin-Morales MA (2018a) Evaluation of the potential agricultural use of biostimulated sewage sludge using mammalian cell culture assays. Chemosphere 199:10–15.  https://doi.org/10.1016/j.chemosphere.2018.01.144 CrossRefGoogle Scholar
  54. Sommaggio LRD, Mazzeo DEC, Sant’ Anna D d A e S et al (2018b) Ecotoxicological and microbiological assessment of sewage sludge associated with sugarcane bagasse. Ecotoxicol Environ Saf 147:550–557.  https://doi.org/10.1016/j.ecoenv.2017.09.009 CrossRefGoogle Scholar
  55. Srivastava R, Kumar D, Gupta SK (2005) Bioremediation of municipal sludge by vermitechnology and toxicity assessment by Allium cepa. Bioresour Technol 96:1867–1871.  https://doi.org/10.1016/j.biortech.2005.01.029 CrossRefGoogle Scholar
  56. Szabová E, Juriš P, Papajová I (2010) Sanitation composting process in different seasons. Ascaris suum as model. Waste Manag 30:426–432.  https://doi.org/10.1016/j.wasman.2009.09.035 CrossRefGoogle Scholar
  57. Tabet M, Abda A, Benouareth DE, Liman R, Konuk M, Khallef M, Taher A (2015) Mutagenic and genotoxic effects of Guelma’s urban wastewater, Algeria. Environ Monit Assess 187:13.  https://doi.org/10.1007/s10661-015-4281-4 CrossRefGoogle Scholar
  58. Tavares P, Balbinot F, de Oliveira HM, Fagundes GE, Venâncio M, Ronconi JVV, Merlini A, Streck EL, da Silva Paula MM, de Andrade VM (2012) Evaluation of genotoxic effect of silver nanoparticles (Ag-Nps) in vitro and in vivo. J Nanopart Res 14:791.  https://doi.org/10.1007/s11051-012-0791-y CrossRefGoogle Scholar
  59. Tedesco SB, Laughinghouse HD IV (2012) Bioindicator of genotoxicity: the Allium cepa test. Environ Contam 21Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre et de l’UniversUniversité 8 Mai 1945 GuelmaGuelmaAlgeria
  2. 2.Department of Molecular Biology and Genetics, Faculty of Engineering and Natural SciencesÜsküdar UniversityIstanbulTurkey
  3. 3.Department of Molecular Biology and Genetics, Faculty of Arts and SciencesUsak UniversityUsakTurkey

Personalised recommendations