Advertisement

Auxinic herbicides induce oxidative stress on Cnesterodon decemmaculatus (Pisces: Poeciliidae)

  • Celeste es Ruiz de Arcaute
  • Natalia A. Ossana
  • Juan Manuel Pérez-Iglesias
  • Sonia Soloneski
  • Marcelo L. LarramendyEmail author
Research Article
  • 32 Downloads

Abstract

Pesticides might increase the production of reactive oxygen species (ROS). Dicamba (DIC) and 2,4-dichlorophenoxyacetic acid (2,4-D) are auxinic herbicides commonly applied in agroecosystems to control unwanted weeds. We analysed the oxidative damage exerted on the fish Cnesterodon decemmaculatus by an acute exposure to DIC- and 2,4-D-based herbicides formulations Banvel® and DMA®, respectively. The Endo III- and Fpg-modified alkaline comet assay was employed for detecting DNA damage caused by oxidative stress, whereas enzymatic and non-enzymatic biomarkers such as the activities of catalase (CAT), glutathione-S-transferase (GST), acetylcholinesterase (AChE), and glutathione content (GSH) were used to assess antioxidant response to these two herbicides. At the DNA level, results demonstrate that both auxinic herbicides induce oxidative damage at purines level. An increase on CAT and GST activities were detected in 48 h- and 96 h-treated specimens with both auxinics. GSH content decreased in fish exposed to DIC during 48 h and to 2,4-D after 96 h of exposure. Additionally, a diminished AChE activity in specimens treated with DIC and 2,4-D was observed only after 96 h. Total protein content decreased in fish exposed to both auxinics during 96 h. These results represent the first evaluation of oxidative damage related to DIC and 2,4-D exposure on a fish species as the Neotropical freshwater teleost C. decemmaculatus.

Keywords

Endo III- and Fpg-modified comet assay Catalase Glutathione Glutathione-S-transferase Acetylcholinesterase 

Notes

Acknowledgments

The authors thank Syngenta Agro S.A. (Buenos Aires, Argentina) and Dow AgroSciences Argentina S.A. (Buenos Aires, Argentina) for kindly providing the formulations Banvel® and DMA®, respectively.

Funding information

The experiments performed in the present study were supported by grants from the National University of La Plata (Grants 11/N817 and 11/N847) and the National Agency of Scientific and Technological Promotion (PICT 2015 Number 3059) from Argentina.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

References

  1. Ackerman PA, Morgan JD, Iwama GK (2005) Anestethics. In: CCoA C (ed) The care and use of fish in research, teaching and testing. Canadian Council on Animal Care, Ottawa, CA, pp 1–22Google Scholar
  2. Adhikari N, Graver IS (1988) Genotoxic effects of some systemic pesticides: in vivo chromosomal aberrations in bone marrow cells in rats. Environ Mol Mutagen 12:235–242CrossRefGoogle Scholar
  3. Amer SM, Aly FAE (2001) Genotoxic effect of 2,4-dichlorophenoxy acetic acid and its metabolite 2,4-dichlorophenol in mouse. Mutat Res 494:1–12CrossRefGoogle Scholar
  4. Arias E (2007) Cytogenetic effects of short- and long-term exposure of chick embryos to the phenoxyherbicide 2,4-D. Environ Mol Mutagen 48:462–466CrossRefGoogle Scholar
  5. Atamaniuk TM, Kubrak OI, Storey KB, Lushchak VI (2013) Oxidative stress as a mechanism for toxicity of 2,4-dichlorophenoxyacetic acid (2,4-D) studies with goldfish gills. Ecotoxicology 22:1498–1508CrossRefGoogle Scholar
  6. Ateeq B, Farah MA, Ali MN, Ahmad W (2002) Clastogenicity of pentachlorophenol, 2,4-D and butachlor evaluated by Allium root tip test. Mutat Res 514:105–113CrossRefGoogle Scholar
  7. Ateeq B, Farah MA, Ahmad W (2005) Detection of DNA damage by alkaline single cell gell electrophoresis in 2,4-dichlorophenoxyacetic-acid- and butachlor-exposed erythrocytes of Clarias batrachus. Ecotoxicol Environ Saf 62:348–354CrossRefGoogle Scholar
  8. Azqueta A, Campos Costa-Amaral I, Collins AR (2017) High-throughput measurements of DNA breaks and oxidised bases with the comet assay. In: Dhawan A, Anderson D (eds) The comet assay in toxicology. The Royal Society of Chemistry, Cambridge, UK, pp 67–87Google Scholar
  9. Baudhuin P, Beaufay H, Rahman-Li Y, Sellinger OZ, Wattiaux R, Jacques P, al. e (1964) Tissue fractionation studies. 17. Intracellular distribution of monoamine oxidase, alanine aminotransferase, D-amino acid oxidase and catalase in rat liver tissue. Biochem J 91:179–184Google Scholar
  10. Baudou FG, Ossana NA, Castañé PM, Mastrángelo MM, Ferrari L (2017) Cadmium effects on some energy metabolism variables in Cnesterodon decemmaculatus. Ecotoxicology 26:1250–1258CrossRefGoogle Scholar
  11. Behra M, Cousin X, Bertrand C, Vonesch JL, Biellmann D, Chatonnet A, Strähle U (2002) Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. Nat Neurosci 5:111–118CrossRefGoogle Scholar
  12. Bokán K, Syberg K, Jensen K, Rank J (2013) Genotoxic potential of two herbicides and their active ingredients assessed with comet assay on a fish cell line, Epithelioma Papillosum Cyprini (EPC). J Toxicol Environ Health 76:1129–1137CrossRefGoogle Scholar
  13. Bony S, Gaillard I, Devaux A (2010) Genotoxicity assessment of two vineyard pesticides in zebrafish. Int J Environ Anal Chem 90:421–428CrossRefGoogle Scholar
  14. Bukowska B (2003) Effects of 2,4-D and its metabolite 2,4-dichlorophenol on antioxidant enzymes and level of glutathione in human erythrocytes. Comp Biochem Physiol C 135:435–441CrossRefGoogle Scholar
  15. Bukowska B (2006) Toxicity of 2,4-dichlorophenoxyacetic acid—molecular mechanisms. Pol J Environ Stud 15:365–374Google Scholar
  16. Cadet J, Douki T, Gasparutto D, Ravanat JL (2003) Oxidative damage to DNA: formation, measurement and biochemical features. Mutat Res 531:5–23CrossRefGoogle Scholar
  17. CASAFE (2017) Guía de Productos Fitosanitarios para la República Argentina. Cámara de Sanidad Agropecuaria y Fertilizantes, 1200 ppGoogle Scholar
  18. Cavalcante DG, Martinez CB, Sofia SH (2008) Genotoxic effects of Roundup on the fish Prochilodus lineatus. Mutat Res 655:41–46CrossRefGoogle Scholar
  19. Çavaş T, Könen S (2007) Detection of cytogenetic and DNA damage in peripheral erythrocytes of goldfish (Carassius auratus) exposed to a glyphosate formulation using the micronucleus test and the comet assay. Mutagenesis 22:263–268CrossRefGoogle Scholar
  20. Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261CrossRefGoogle Scholar
  21. Collins AR, Azqueta A (2012) DNA repair is a biomarker in human biomonitoring studies; further applications of the comet assay. Mutat Res 736:122–129CrossRefGoogle Scholar
  22. Collins AR, Dusinská M, Gedik CM, Stetina R (1996) Oxidative damage to DNA: do we have a reliable biomarker? Environ Health Perspect 104:465–469CrossRefGoogle Scholar
  23. Cooke MS, Olinski R, Evans MD (2006) Does measurement of oxidative damage to DNA have clinical significance? Clin Chim Acta 365:30–49CrossRefGoogle Scholar
  24. Costantini D, Verhulst S (2009) Does high antioxidant capacity indicate low oxidative stress? Funct Ecol 23:506–509CrossRefGoogle Scholar
  25. de la Torre FR, Ferrari L, Salibián A (2005) Biomarkers of a native fish species (Cnesterodon decemmaculatus) application to the water toxicity assessment of a peri-urban polluted river of Argentina. Chemosphere 59:577–583CrossRefGoogle Scholar
  26. de Moura FR, Brentegani KR, Gemelli A, Sinhorin AP, Sinhorin VDG (2017) Oxidative stress in the hybrid fish jundiara (Leiarius marmoratus x Pseudoplatystoma reticulatum) exposed to Roundup Original®. Chemosphere 185:445–451CrossRefGoogle Scholar
  27. Demir E, Akça H, Kaya B, Burgucu D, Tokgün O, Turna F, Aksakal S, Vales G, Creus A, Marcos R (2014) Zinc oxide nanoparticles: genotoxicity, interactions with UV-light and cell-transforming potential. J Hazard Mater 264:420–429CrossRefGoogle Scholar
  28. Dhawan A, Anderson D (eds) (2017) The comet assay in toxicology. Issues in toxicology. The Royal Society of Chemistry, Cambridge, UK, 590 ppGoogle Scholar
  29. Elia AC, Galarini R, Taticchi MI, Dörr AJM, Mantilacci L (2003) Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicol Environ Saf 55:162–167CrossRefGoogle Scholar
  30. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77CrossRefGoogle Scholar
  31. Ellman GL, Courtney KD, Andreas VJ, Feathersone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95CrossRefGoogle Scholar
  32. Espandiari P, Ludewig G, Glauert HP, Robertson LW (1998) Activation of hepatic NF-κB by the herbicide dicamba (2-methoxy-3,6-dichlorobenzoic acid) in female and male rats. J Biochem Mol Toxicol 12:339–344CrossRefGoogle Scholar
  33. Farah MA, Ateeq B, Ahmad W (2006) Antimutagenic effect of neem leaves extract in freshwater fish, Channa punctatus evaluated by cytogenic tests. Sci Total Environ 364:200–214CrossRefGoogle Scholar
  34. Félix-Cañedo TE, Durán-Álvarez JC, Jiménez-Cisneros B (2013) The ocurrence and distribution of a group of organic micropollutants in Mexico City’s water sources. Sci Total Environ 454-455:109–118CrossRefGoogle Scholar
  35. Ferrari A, Venturino A, Pechén de D’angelo M (2007) Muscular and brain cholinesterase sensitivities to azinphos methyl and carbaryl in the juvenile rainbow trout Oncorhynchus mykiss. Comp Biochem Physiol C Toxicol Pharmacol 146:308–313CrossRefGoogle Scholar
  36. Finkel TH, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of aging. Nature 408:239–247CrossRefGoogle Scholar
  37. Glozier NE, Struger J, Cessna AJ, Gledhill M, Roundeau M, Ernst WR, Sekela MA, Cagampan SJ, Sverko E, Murphy C, Murray JL, Donald DB (2012) Occurrence of glyphosate and acidic herbicides in select urban rivers and streams in Canada, 2007. Environ Sci Pollut Res 19:821–834CrossRefGoogle Scholar
  38. Glusczak L, Loro VL, Pretto A, Moraes BS, Raabe A, Duarte MF, da Fonseca MB, de Menezes CC, de Sousa Valladao DM (2011) Acute exposure to glyphosate herbicide affects oxidative parameters in piava (Leporinus obtusidens). Arch Environ Contam Toxicol 61:624–630CrossRefGoogle Scholar
  39. Gómez S, Villar C, Bonetto C (1998) Zinc toxicity in the fish Cnesterodon decemmaculatus in the Parana river and Rio de la Plata estuary. Environ Pollut 99:159–165CrossRefGoogle Scholar
  40. González M, Soloneski S, Reigosa MA, Larramendy ML (2005) Genotoxiciy of the herbicide 2,4-dichlorophenoxyacetic acid and a commercial formulation, 2,4-dichlorophenoxyacetid acid dimethylamine salt. I. Evaluation of DNA damage and cytogenetic endopoints in Chinese hamster ovary (CHO) cells. Toxicol in Vitro 19:289–297CrossRefGoogle Scholar
  41. González N, Soloneski S, Larramendy ML (2006) Genotoxicity analysis of the phenoxy herbicide dicamba in mammalian cells in vitro. Toxicol in Vitro 20:1481–1487CrossRefGoogle Scholar
  42. González N, Soloneski S, Larramendy ML (2007) The chlorophenoxy herbicide dicamba and its commercial formulation banvel induce genotoxicity in Chinese hamster ovary cells. Mutat Res 634:60–68CrossRefGoogle Scholar
  43. González N, Soloneski S, Larramendy ML (2011) A combination of the cytokinesis-block micronucleus cytome assay and centromeric identification for evaluation of the genotoxicity of dicamba. Toxicol Lett 207:204–212CrossRefGoogle Scholar
  44. Guilherme S, Santos MA, Barroso C, Gaivão I, Pacheco M (2012) Differential genotoxicity of RoundUp® formulation and its constituents in blood cells of fish (Anguilla anguilla) considerations on chemical interactions and DNA damaging mechanisms. Ecotoxicology 21:1381–1390CrossRefGoogle Scholar
  45. Habib A, Tabata M (2004) Oxidative DNA damage induced by HEPES (2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid) buffer in the presence of Au(III). J Inorg Biochem 98:1696–1702CrossRefGoogle Scholar
  46. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzimatic step in mercapturic acid formation. J Biol Chem 22:7130–7139Google Scholar
  47. Heindorff K, Aurich O, Michaelis A, Rieger R (1983) Genetic toxicology of ethylenediaminetetraacetic acid. Mutat Res 115:149–173CrossRefGoogle Scholar
  48. Hostovsky M, Blahova J, Plhalova L, Stepanova S, Praskova E, Marsalek P, Svobodova Z (2012) Oxidative stress parameters in early developmental stages of common carp (Cyprinus carpio L.) after subchronic exposure to terbuthylazine and metribuzin. Neuro Endocrinol Lett 33:124–129Google Scholar
  49. Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213CrossRefGoogle Scholar
  50. Jin J, Kurobe T, Ramírez-Duarte WF, Bolotaolo MB, Lam CH, Pandey PK, Hung T-C, Stillway ME, Zweig L, Caudill J, Lin L, Teh SJ (2018) Sub-lethal effects of herbicides penoxsulam, imazamox, fluridone and glyphosate on Delta smelt (Hypomesus transpacificus). Aquat Toxicol 197:79–88CrossRefGoogle Scholar
  51. Jovanović J, Kolarević S, Milošković A, Radojković N, Simić V, Dojčinović B, Kračun-Kolarević M, Paunović M, Kostić J, Sunjog K, Timilijić J, Djordjević J, Gačić Z, Žegura B, Vuković-Gačić B (2018) Evaluation of genotoxic potential in the Velika Morava River basin in vitro and in situ. Environ Sci Pollut Res 621:1289–1299Google Scholar
  52. Katsiadaki I, Morris S, Squires C, Hurst MR, James JD, Scott AP (2006) Use of the three-spined stickleback (Gasterosteus aculeatus) as a sensitive in vivo test for detection of environmental antiandrogens. Environ Health Perspect 114:115–121CrossRefGoogle Scholar
  53. Kaya A, Yigit E (2012) Interactions among glutathione S-transferase, glutathione reductase activity and glutathione contents in leaves of Vicia faba L. subjected to flurochloridone. Fresenius Environ Bull 21:1635–1640Google Scholar
  54. Kubrak OI, Atamaniuk TM, Husak VV, Lushchak VI (2013) Transient effects of 2,4-dichlorophenoxyacetic acid (2,4-D) exposure on some metabolic and free radical processes in goldfish white muscle. Food Chem Toxicol 59:356–361CrossRefGoogle Scholar
  55. Kumar A, Rai DA, Sharma B, Pandey RS (2009) λ-Cyhalothrin and cypermethrin induced in vivo alterations in the activity of acetylcholinesterase in a fresh-water fish, Channa punctatus (Bloch). Pesticide Biochem Physiol 93:96–99CrossRefGoogle Scholar
  56. Lajmanovich RC, Attademo AM, Simoniello MF, Poletta GL, Junges CM, Peltzer PM, Grenón P, Cabagna-Zenklusen MC (2015) Harmful effects of the dermal intake of commercial formulations containing chlorpyrifos, 2,4-D, and glyphosate on the common toad Rhinella arenarum (Anura: Bufonidae). Water Air Soil Pollut 226Google Scholar
  57. Lal B, Sarang MK, Kumar P (2013) Malathion exposure induces the endocrine disruption and growth retardation in the catfish, Clarias batrachus (Linn.). Gen Compar Endocrinol 181:139–145CrossRefGoogle Scholar
  58. Lazartigues A, Thomas M, Banas D, Brun-Bellut J, Cren-Olivé C, Feidt C (2013) Accumulation and half-lives of 13 pesticides in muscle tissue of freshwater fishes through food exposure. Chemosphere 91:530–535CrossRefGoogle Scholar
  59. Li J, Li Y, Lu J (2009) Adsorption of herbicides 2,4-D and acetochlor on inorganic-organic bentonites. Appl Clay Sci 46:314–318CrossRefGoogle Scholar
  60. Li K, Wu J-Q, Jiang L-L, Shen L-Z, Li J-Y, He Z-H, Wei P, Lv Z, He M-F (2017) Developmental toxicity of 2,4-dichlorophenoxyacetic acid in zebrafish embryos. Chemosphere 171:40–48CrossRefGoogle Scholar
  61. Liaud C, Brucher M, Schummer C, Coscolla C, Wolff H, Schwartz J, Yusa V, Millet M (2016) Utilization of long duration high-volume sampling coupled to SPME-GC-MS/MS for the assessment of airborne pesticides variability in an urban area (Strasbourg, France) during agricultural applications. J Environ Sci Health 0:1–12Google Scholar
  62. Loos R, Locoro G, Comero S, Contini S, Schwesig D, Werres F, Balsaa P, Gans O, Weiss S, Blaha L, Bolchi M, Gawlik BM (2010) Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res 44:4115–4126CrossRefGoogle Scholar
  63. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  64. Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30CrossRefGoogle Scholar
  65. Madriagal-Bujaidar E, Hernández-Ceruelos A, Chamorro G (2001) Induction of sister chromatid exchanges by 2,4-dichlorophenoxyacetic acid in somatic and germ cells of mice exposed in vivo. Food Chem Toxicol 39:941–946CrossRefGoogle Scholar
  66. Mann RM, Bidwell JR (1999) The toxicity of glyphosate and several glyphosate formulations to four species of southwestern Australian frogs. Arch Environ Contam Toxicol 36:193–199CrossRefGoogle Scholar
  67. Mansano AS, Moreira RA, Dornfeld HC, Diniz LGR, Vieira EM, Daam MA, Rocha O, Seleghim MHR (2016a) Acute and chronic toxicity of diuron and carbofuran to the Neotropical cladoceran Ceriodaphnia silvestrii. Environ Sci Pollut Res 25:13335–13346.  https://doi.org/10.1007/s11356-016-8274-9 CrossRefGoogle Scholar
  68. Mansano AS, Moreira RA, Pierozzi M, Oliveira TM, Vieira EM, Rocha O, Regali-Seleghim MH (2016b) Effects of diuron and carbofuran pesticides in their pure and commercial forms on Paramecium caudatum: the use of protozoan in ecotoxicology. Environ Pollut 213:160–172CrossRefGoogle Scholar
  69. Martínez-Tabche L, Madriagal-Bujaidar E, Negrete T (2004) Genotoxicity and lipoperoxidation produced by paraquat and 2,4-dichlorophenoxyacetic acid in the gills of rainbow trout (Oncorhynchis mikiss). Bull Environ Contam Toxicol 73Google Scholar
  70. Martins M, Costa PM (2017) The comet assay in aquatic (eco)genotoxicity using non-conventional model organisms: relevance, constrains and prospects. In: Larramendy ML (ed) Ecotoxicology and genotoxicology: non-traditional aquatic models. The Royal Society of Chemistry, Cambridge, pp 3–32Google Scholar
  71. Mastrángelo MM, Ferrari L (2013) Cnesterodon decemmaculatus juveniles as test organisms in toxicity assessment: cadmium case. Bull Environ Contam Toxicol 91:49–54CrossRefGoogle Scholar
  72. Matviishyn TM, Kubrak OI, Husak VV, Storey KB, Lushchak VI (2014) Tissue-specific induction of oxidative stress in goldfish by 2,4-dichlorophenoxyacetic acid: mild in brain and moderate in liver and kidney. Environ Toxicol Pharmacol 37:861–869CrossRefGoogle Scholar
  73. Meffe R, de Bustamante I (2014) Emerging organic contaminants in surface water and groundwater: a first overview of the situation in Italy. Sci Total Environ 481:280–295CrossRefGoogle Scholar
  74. Mela M, Guiloski IC, Doria HB, Randi MA, de Oliveira Ribeiro CA, Pereira L, Maraschi AC, Prodocimo V, Freire CA, Silva de Assis HC (2013) Effects of the herbicide atrazine in neotropical catfish (Rhamdia quelen). Ecotoxicol Environ Saf 93:13–21CrossRefGoogle Scholar
  75. Menéndez-Helman RJ, Ferreyroa GV, Dos Santos AM, Salibián A (2012) Glyphosate as an acetylcholinesterase inhibitor in Cnesterodon decemmaculatus. Bull Environ Contam Toxicol 88:6–9CrossRefGoogle Scholar
  76. Menéndez-Helman RJ, Ferreyroa GV, dos Santos AM, Salibián A (2015) Circannual rhythms of acetylcholinesterase (AChE) activity in the freshwater fish Cnesterodon decemmaculatus. Ecotoxicol Environ Saf 111:236–241CrossRefGoogle Scholar
  77. Menni RC, Gómez SE, López Armengol F (1996) Subtle relationships: freshwater fishes and the chemistry of water in southern South America. Hydrobiologia 328:173–197CrossRefGoogle Scholar
  78. Molinari G, Kujawski M, Scuto A, Soloneski S, Larramendy ML (2013) DNA damage kinetics and apoptosis in ivermectin-treated Chinese hamster ovary (CHO-K1) cells. J Appl Toxicol 33:1260–1267Google Scholar
  79. Muthulakshmi S, Maharajan K, Habibi HR, Kadirvelu K, Venkataramana M (2018) Zearalenone induced embryo and neurotoxicity in zebrafish model (Danio rerio) role of oxidative stress revealed by a multi biomarker study. Chemosphere 198:111–121CrossRefGoogle Scholar
  80. Naqvi G-Z, Shoaib N, Ali AM (2017) Pesticides impact on protein fish (Oreochromis mossambicus) tissues. Indian J Geo Marine Sci 49:1864–1868Google Scholar
  81. Newman MC, Clements WH (2008) Ecotoxicology. A comprehensive treatment. CRC Press, Boca Ratón, FL, 852 ppGoogle Scholar
  82. Nikoloff N, Natale GS, Marino D, Soloneski S, Larramendy ML (2014) Flurochloridone-based herbicides induced genotoxicity effects on Rhinella arenarum tadpoles (Anura: Bufonidae). Ecotoxicol Environ Saf 100:275–281CrossRefGoogle Scholar
  83. Nunes B, Carvahlo F, Guilhermino L (2005) Characterization and use of the total head soluble cholinesterases from mosquitofish (Gambusia holbrooki) for screening of anticholinesterase activity. J Enzyme Inhib Med Chem 20:369–376CrossRefGoogle Scholar
  84. Oruç EO, Üner N (2000) Combined effects of 2,4-D and azinphosmethyl on antioxidant enzymes and lipid peroxidation in liver of Oreochromis niloticus. Compar Biochem Physiol C 127:291–296Google Scholar
  85. Oruç EO, Üner N (2002) Marker enzyme assessment in the liver of Cyprinus carpio (L.) exposed to 2,4-D and azinphosmethyl. J Biochem Mol Toxicol 16:182–188CrossRefGoogle Scholar
  86. Oruç EO, Sevgiler Y, Üner N (2004) Tissue-specific oxidative stress responses in fish exposed to 2,4-D and azinphosmethyl. Compar Biochem Physiol C 137:43–51CrossRefGoogle Scholar
  87. Ossana NA, Eissa BL, Baudou FG, Castañé PM, Soloneski S, Ferrari L (2016) Multibiomarker response in ten spotted live-bearer fish Cnesterodon decemmaculatus (Jenyns, 1842) exposed to Reconquista river water. Ecotoxicol Environ Saf 133:73–81CrossRefGoogle Scholar
  88. Ozcan Oruç E, Uner N, Sevgiler Y, Usta D, Durmaz H (2006) Sublethal effects of organophosphate diazinon on the brain of Cyprinus carpio. Drug Chem Toxicol 29:57–67CrossRefGoogle Scholar
  89. Pamela CC, Richard AH (1994) Biochemistry. Libbincott’s Illustrated Reviews. Lippencot-Raven Publishers, Philadelphia, PA, 443 ppGoogle Scholar
  90. Paulino MG, Souza NES, Fernandes MN (2012) Subchronic exposure to atrazine induces biochemical and histopathological changes in the gills of a Neotropical freshwater fish, Prochilodus lineatus. Ecotoxicol Environ Saf 80:6–13CrossRefGoogle Scholar
  91. Peixoto FP, Gomes-Laranjo J, Vicente JA, Madeira VMC (2008) Comparative effects of the herbicides dicamba, 2,4-D and paraquat on non-green potato tuber calli. J Plant Physiol 165:1125–1133CrossRefGoogle Scholar
  92. Pérez-Iglesias JM, Ruiz de Arcaute C, Nikoloff N, Dury L, Soloneski S, Natale GS, Larramendy M (2014) The genotoxic effects of the imidacloprid-based insecticide formulation Glacoxan Imida on Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicol Environ Saf 104:120–126CrossRefGoogle Scholar
  93. Pérez-Iglesias JM, Ruiz de Arcaute C, Natale GS, Soloneski S, Larramendy ML (2017) Evaluation of imazethapyr-induced DNA oxidative damage by alkaline Endo III- and Fpg-modified single-cell gel electrophoresis assay in Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicol Environ Saf 142:503–508CrossRefGoogle Scholar
  94. Persch TSP, Weimer RN, Freitas BS, Oliveira GT (2017) Metabolic parameters and oxidative balance in juvenile Rhamdia quelen exposed to rice paddy herbicides: Roundup®, Primoleo®, and Facet®. Chemosphere 174:98–109CrossRefGoogle Scholar
  95. Pitarque M, Creus A, Marcos R, Hughes JA, Anderson D (1999) Examination of various biomarkers measuring genotoxic endpoints from Barcelona airport personnel. Mutat Res 440:195–204CrossRefGoogle Scholar
  96. Poletta GL, Simoniello MF, Mudry MD (2016) Biomarkers of oxidative damage and antioxidant defense capacity in Caiman latirostris blood. Compar Biochem Physiol C 179:29–36Google Scholar
  97. Rao KS, Moorthy KS, Reddy BK, Swami KS, Chetty CS (1987) Effect of benthiocarb on protein metabolism of freshwater teleost Sarotherodon mossambicus. Indian J Environ Health 29:45–51Google Scholar
  98. Rodríguez-Fuentes G, Rubio-Escalante FJ, Noreña-Barroso E, Escalante-Herrera KS, Schlenk D (2015) Impacts of oxidative stress on acetylcholinesterase transcription, and activity in embryos of zebrafish (Danio rerio) following chlorpyrifos exposure. Compar Biochem Physiol C 172-173:19–25Google Scholar
  99. Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ, Gómez M, Del Rio LA, Sandalio LM (2004) Cd-induced subcellular accumulation of O2 .- and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134CrossRefGoogle Scholar
  100. Ruiz de Arcaute C, Pérez-Iglesias JM, Nikoloff N, Natale GS, Soloneski S, Larramendy M (2014a) Genotoxicity evaluation of the insecticide imidacloprid on circulating blood cells of Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae) by comet and micronucleus bioassays. Ecol Indic 45:632–639CrossRefGoogle Scholar
  101. Ruiz de Arcaute C, Soloneski S, Larramendy M (2014b) Evaluation of the genotoxicity of a herbicide formulation containing 3,6-dichloro-2-metoxybenzoic acid (dicamba) in circulating blood cells of the tropical fish Cnesterodon decemmaculatus. Mutat Res 773:1–8CrossRefGoogle Scholar
  102. Ruiz de Arcaute C, Soloneski S, Larramendy M (2016) Toxic and genotoxic effects of the 2,4-dichlorophenoxyacetic acid (2,4-D)-based herbicide on the Neotropical fish Cnesterodon decemmaculatus. Ecotoxicol Environ Saf 128:222–229CrossRefGoogle Scholar
  103. Salbego J, Pretto A, Gioda CR, Cavalheiro de Menezes C, Lazzari R, Radunz J, Baldisseriotto B, Loro VL (2010) Herbicide formulation with glyphosate affects growth, acetylcholinesterase activity, and metabolic and haematological parameters in piava (Leporinus obtusidens). Arch Environ Contam Toxicol 58:740–745Google Scholar
  104. Samanta P, Pal S, Mukherjee AK, Ghosh AR (2014) Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes. Ecotoxicol Environ Saf 107:120–125CrossRefGoogle Scholar
  105. Sancho E, Ferrando MD, Andreu E (1997) Sublethal effects of an organophosphate insecticide on the European eel, Anguilla anguilla. Ecotoxicol Environ Saf 36:57–65CrossRefGoogle Scholar
  106. Sapana Devi M, Gupta A (2014) Sublethal toxicity of commercial formulations of deltamethrin and permethrin on selected biochemical constituents and enzyme activities in liver and muscle tissues of Anabas testudineus. Pest Biochem Physiol 115:48–52CrossRefGoogle Scholar
  107. Seshagiri R, Sreenivasa MK, Reddy KB, Sreeramulu CC (1987) Effect of benthiocarb on protein metabolism of freshwater teleost Sarotherodon mossambicus. Indian J Environ Health 29:45–51Google Scholar
  108. Soloneski S, Larramendy M (2010) Sister chromatid exchanges and chromosomal aberrations in Chinese hamster ovary (CHO-K1) cells treated with insecticide pirimicarb. J Hazard Mater 174:410–415CrossRefGoogle Scholar
  109. Soloneski S, Larramendy ML (2017) The use of the ten spotted live-bearer fish Cnesterodon decemmaculatus (Jenyns, 1842) (Pisces, Poeciliidae) in the genotoxic evaluation of environmental pollutants. In: Larramendy ML (ed) Ecotoxicology and genotoxicology—non-traditional aquatic models. The Royal Society of Chemistry, London, pp 327–346CrossRefGoogle Scholar
  110. Soloneski S, Nikoloff N, Larramendy ML (2016) Analysis of possible genotoxicity of the herbicide flurochloridone and its commercial formulations: Endo III and Fpg alkaline comet assays in Chinese hamster ovary (CHO-K1) cells. Mutat Res 797:46–52CrossRefGoogle Scholar
  111. Soloneski S, Ruiz de Arcaute C, Nikoloff N, Larramendy ML (2017) Genotoxicity of the herbicide imazethapyr in mammalian cells by oxidative DNA damage envaluation using the Endo III and Fpg alkaline comet assays. Environ Sci Pollut Res 24:10292–10300CrossRefGoogle Scholar
  112. Sorensen KC, Stucki JW, Warner ED, Wagner ED, Plewa MJ (2005) Modulation of the genotoxicity of pesticides reacted with redox-modified smectite clay. Environ Mol Mutagen 46:174–181CrossRefGoogle Scholar
  113. Stara A, Machova J, Velisek J (2012) Effect of chronic exposure to simazine on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.). Environ Toxicol Pharmacol 33:334–343CrossRefGoogle Scholar
  114. Summerfelt RC, Smith LS (1990) Anaesthesia, surgery and related techniques. In: Schreck CB, Moyle PB (eds) Methods for fish biology. American Fisheries Society, Bethesda MD, pp 213–272Google Scholar
  115. Tagert MLM, Massey JH, Shaw DR (2014) Water quality survey of Mississippi’s Upper Pearl River. Sci Total Environ 481:564–573CrossRefGoogle Scholar
  116. Topal A, Alak G, Altun S, Erol HS, Atamanalp M (2017) Evaluation of 8-hydroxy-2-deoxyguanosine and NFkB activation, oxidative stress response, acetylcholinesterase activity, and histopathological changes in rainbow trout brain exposed to linuron. Environ Toxicol Pharmacol 49:14–20CrossRefGoogle Scholar
  117. Tripathi G, Singh H (2013) Impact of alphamethrin on biochemical parameters of Channa punctatus. J Environ Biol 34:227–230Google Scholar
  118. Tripathi G, Verma P (2004a) Endosulfan-mediated biochemical changes in the freshwater fish Clarias batrachus. Biomed Environ Sci 17:47–56Google Scholar
  119. Tripathi G, Verma P (2004b) Fenvalerate-induced changes in a catfish, Clarias batrachus: metabolic enzymes, RNA and protein. Compar Biochem Physiol C 138:75–79Google Scholar
  120. Ullah R, Zuberi A, Ullah S, Ullah I, Ullah Dawar F (2014) Cypermethrin induced behavioral and biochemical changes in mahseer, Tor putitora. J Toxicol Sci 39:829–836CrossRefGoogle Scholar
  121. USEPA (2005) Reregistration Eligibility Decision (RED) for 2,4 D. In: 738-R-05-002. U.S. Environmental Protection Agency, Washington DCGoogle Scholar
  122. USEPA (2006) Reregistration eligibility decision for dicamba and associated salts. U.S. Environmental Protection Agency, Washington DC https://archive.epa.gov/pesticides/reregistration/web/pdf/dicamba_red.pdf Google Scholar
  123. USEPA (2017) Pesticides industry sales and usage. 2008-2012 Market estimates, vol 24. U.S. Environmental Protection Agency, Washington DCGoogle Scholar
  124. Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64:178–189CrossRefGoogle Scholar
  125. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40CrossRefGoogle Scholar
  126. van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk aseessment: a review. Environ Toxicol Pharmacol 13:57–149CrossRefGoogle Scholar
  127. Varó I, Amat F, Navarro JC (2008) Acute toxicity of dichlorvos to Aphanius iberus (Cuvier & Valenciennes, 1846) and its anti-cholinesterase effects on this species. Aquat Toxicol 88:53–61CrossRefGoogle Scholar
  128. Vera-Candioti J, Soloneski S, Larramendy ML (2011) Acute toxicity of chromium on Cnesterodon decemmaculatus (Pisces: Poeciliidae). Theoria 1:81–88Google Scholar
  129. Vera-Candioti J, Soloneski S, Larramendy ML (2013) Single-cell gel electrophoresis assay in the ten spotted live-bearer fish, Cnesterodon decemmaculatus (Jenyns, 1842), as bioassay for agrochemical-induced genotoxicity. Ecotoxicol Environ Saf 98:368–373CrossRefGoogle Scholar
  130. Wang XH, Souders CL, Zhao YH, Martyniuk CJ (2018) Mitochondrial bioenergetics and locomotor activity are altered in zebrafish (Danio rerio) after exposure to the bipyridylium herbicide diquat. Toxicol Lett 283:13–20CrossRefGoogle Scholar
  131. WHO (2009) The WHO recommended classification of pesticides by hazard and guidelines to classification: 2009. World Health Organization, Geneva, Switzerland, 81 ppGoogle Scholar
  132. Ye J, Wu H, Wu Y, Wang C, Zhang H, Shi X, Yang J (2012) High molecular weight hyaluronan decreases oxidative DNA damage induced by EDTA in human corneal epithelial cells. Eye 26:1012–1020CrossRefGoogle Scholar
  133. Zar JH (2010) Biostatistical analysis, vol 960. Prentice Hall, New JerseyGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Celeste es Ruiz de Arcaute
    • 1
    • 2
  • Natalia A. Ossana
    • 2
    • 3
  • Juan Manuel Pérez-Iglesias
    • 1
    • 2
  • Sonia Soloneski
    • 1
    • 2
  • Marcelo L. Larramendy
    • 1
    • 2
    Email author
  1. 1.Cátedra de Citología, Facultad de Ciencias Naturales y MuseoUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Programa de Ecofisiología Aplicada, Instituto de Ecología y Desarrollo Sustentable (PRODEA-INEDES)Universidad Nacional de LujanLujánArgentina

Personalised recommendations