Environmental Science and Pollution Research

, Volume 26, Issue 18, pp 18930–18937 | Cite as

Environmental risk assessment of antibiotics in agroecosystems: ecotoxicological effects on aquatic microbial communities and dissemination of antimicrobial resistances and antibiotic biodegradation potential along the soil-water continuum

  • Fabrice Martin-LaurentEmail author
  • Edward Topp
  • Loren Billet
  • Isabelle Batisson
  • Cédric Malandain
  • Pascale Besse-Hoggan
  • Soizic Morin
  • Joan Artigas
  • Chloé Bonnineau
  • Laura Kergoat
  • Marion Devers-Lamrani
  • Stéphane Pesce
Research and Education Highlights


Antibiotics have a wide application range in human and veterinary medicines. Being designed for pharmacological stability, most antibiotics are recalcitrant to biodegradation after ingestion and can be persistent in the environment. Antibiotic residues have been detected as contaminants in various environmental compartments where they cause human and environmental threats, notably with respect to the potential emergence and proliferation of antibiotic-resistant bacteria. An important component of managing environmental risk caused by antibiotics is to understand exposure of soil and water resources to their residues. One challenge is to gain knowledge on the fate of antibiotics in the ecosystem along the soil-water continuum, and on the collateral impact of antibiotics on environmental microorganisms responsible for crucially important ecosystem functions. In this context, the ANTIBIOTOX project aims at studying the environmental fate and impact of two antibiotics of the sulfonamide class of antibiotics, sulfamethazine (SMZ), and sulfamethoxazole (SMX).


Antibiotics Resistance gene Bacteria Biodegradation 



Fabrice Martin-Laurent is also grateful to the Organization for Economic Co-operation and Development (OECD) for support of a work transfer to E. Topp’s laboratory within the framework of the Co-Operative Research Program within the “Biological Resource Management for Sustainable Agricultural Systems” of the OECD (contract number JA00073530).

Funding information

The authors would like to thank the ANR (Agence Nationale de la Recherche) for funding the ANTIBIOTOX project (contract no ANR-17-CE34-0003).


  1. ANSES (2015) Rapport annuel Médicaments vétérinaires contenant des antibiotiques en France en 2014Google Scholar
  2. Artigas J, Romaní AM, Gaudes A, Muñoz I, Sabater S (2009) Benthic structure and metabolism in a Mediterranean stream: from biological communities to the whole stream ecosystem function. Freshw Biol 50:2025–2036CrossRefGoogle Scholar
  3. Ashbolt NJ, Amézquita A, Backhaus T, Borriello P, Brandt KK, Collignon P, Coors A, Finley R, Gaze WH, Heberer T, Lawrence JR, Larsson DGJ, McEwen SA, Ryan JJ, Schönfeld J, Silley P, Snape JR, Van den Eede C, Topp E (2013) Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ Health Persp 121:993–1001CrossRefGoogle Scholar
  4. Baran W, Sochacka J, Wardas WAA (2006) Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions. Chemosphere 65:1295–1299CrossRefGoogle Scholar
  5. Barnes KK, Koplin DW, Furlong ET, Zaugg SD, Meyer MT, Barber LB (2008) A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States — I groundwater. Sci Total Environ 402:192–200CrossRefGoogle Scholar
  6. Barra Caracciolo A, Topp E, Grenni P (2015) Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities. A review. J Pharm Biomed Anal 106:25–36CrossRefGoogle Scholar
  7. Batt AL, Kostich MS, Lazorchak JM (2008) Analysis of ecologically relevant pharmaceuticals in wastewater and surface water using selective solid-phase extraction and UPLC-MS/MS. Anal Chem 50:5021–5030CrossRefGoogle Scholar
  8. Bengtsson-Palme J, Larsson DGJ (2016) concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation. Environ Int 86:140–149CrossRefGoogle Scholar
  9. Bengtsson-Palme J, Kristiansson E, Larsson DGJ (2018) Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev 1:42Google Scholar
  10. Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Burgmann H, Sorum H, Norstrom M, Pons MN, Kreuzinger N, Huovinen P, Stefani S, Schwartz T, Kisand V, Baquero F, Martinez JL (2015) Tackling antibiotic resistance: the environmental framework. Nat Rev Micro 13:310–317CrossRefGoogle Scholar
  11. Bernot MJ, Smith L, Frey J (2013) Human and veterinary pharmaceutical abundance and transport in a rural Central Indiana stream influenced by confined animal feeding operations (CAFOs). Sci Total Environ 445–446:219–230CrossRefGoogle Scholar
  12. Blanco G, Lemus JA, Grande J (2009) Microbial pollution in wildlife: linking agricultural manuring and bacterial antibiotic resistance in red-billed choughs. Microbial Environ Res 109:405–412Google Scholar
  13. Bottoni P, Caroli S (2015) Detection and quantification of residues and metabolites of medicinal products in environmental compartments, food commodities and workplaces. A review. J Pharm Biomed Anal 106:3–24CrossRefGoogle Scholar
  14. Boxall ABA (2004) The environmental side effects of medication: how are human and veterinary medicines in soils and water bodies affecting human and environmental health? EMBO Rep 5:1110–1116CrossRefGoogle Scholar
  15. Brandt KK, Sjøholm OR, Krogh KA, Halling-Sørensen B, Nybroe O (2009) The environmental release and fate of antibiotics. Environ Sci Technol 43:2963–2968CrossRefGoogle Scholar
  16. Brandt KK, Amézquita A, Backhaus T, Boxall A, Coors A, Heberer T, Lawrence JR, Lazorchak J, Schönfeld J, Snape JR, Zhu YG, Topp E (2015) Ecotoxicological assessment of antibiotics and other compounds with antimicrobial properties: a call for improved consideration of microorganisms. Environ Int 85:189–205CrossRefGoogle Scholar
  17. Chee-Sanford JC, Aminov RI, Krapac IJ, Garrigues-Jeanjean N, Mackie RI (2001) Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Appl Environ Microbiol 67:1494–1502CrossRefGoogle Scholar
  18. Chen J, Xie S (2018) Overview of sulfonamide biodegradation and the relevant pathways and microorganisms. Sci Total Environ 640-641:1465–1477CrossRefGoogle Scholar
  19. Chitescu CL, Oosterink E, De Jong J, Stolker AAM (2012) Accurate mass screening of pharmaceuticals and fungicides in water by U-HPLC-Exactive Orbitrap MS. Anal Bioanal Chem 403:2997e3011CrossRefGoogle Scholar
  20. Chunhui Z, Liangliang W, Xiangyu G, Xudan H (2016) Antibiotics in WWTP discharge into the Chaobai river, Beijing. Arch Environ Prot 42:48–57CrossRefGoogle Scholar
  21. Collado N, Buttiglieri G, Marti E, Ferrando-Climent L, Rodriguez-Mozaz S, Barcelo D, Comas J, Rodriguez-Roda I (2013) Effects on activated sludge bacterial community exposed to sulfamethoxazole. Chemosphere 93:99–106CrossRefGoogle Scholar
  22. Corcoll N, Casellas M, Huerta B, Guasch H, Acuña V, Rodriguez-Mozaz S, Serra-Compte A, Barcelo D, Sabater S (2015) Effects of flow intermittency and pharmaceutical exposure on the structure and metabolism of stream biofilms. Sci Total Environ 503-504:159–170CrossRefGoogle Scholar
  23. De Vries SL, Zhang P (2016) Antibiotics and the terrestrial nitrogen cycle: a review. Curr Pollution Rep 2:51–67CrossRefGoogle Scholar
  24. de Weert J, Smedes F (2015) Passive sampling van grondwater. Een trial in peilbuizen van het provinciaal meetnet van de provincie Noord-Brabant. Deltares, Delft, the Netherlands. Report no 210074-000-BGS-0009, 1-44Google Scholar
  25. Deng Y, Mao Y, Li B, Yang C, Zhang T (2016) Aerobic degradation of sulfadiazine by Arthrobacter spp.: kinetics, pathways and genomic characterization. Environ Sci Technol 50:9566–9575CrossRefGoogle Scholar
  26. Deng Y, Li B, Zhang T (2018) Bacteria that make a meal of sulfonamide antibiotics: blind spots and emerging opportunities. Environ Sci Technol 52:3854–3868CrossRefGoogle Scholar
  27. Di Nica V, Menabelli L, Azimonti G, Finizio A (2015) RANKVET: a new ranking method for comparing and prioritizing the environmental risk of veterinary pharmaceuticals. Ecol Indic 52:270–276CrossRefGoogle Scholar
  28. Finley RL, Collignon P, Larsson DGJ, McEwen SA, Li XZ, Gaze WH, Reid-Smith R, Timinouni M, Graham DW, Topp E (2013) The scourge of antibiotic resistance: the important role of the environment. J Clin Infect Dis 57:704–710CrossRefGoogle Scholar
  29. Gao P, Munir M, Xagoraraki I (2012) Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Sci Tot Environ 421:173–183CrossRefGoogle Scholar
  30. Gauthier H, Yargeau V, Cooper DG (2010) Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism. Sci Tot Environ 408:1701–1706CrossRefGoogle Scholar
  31. Ghiglione JF, Martin-Laurent F, Pesce S (2016) Microbial ecotoxicology: an emerging discipline facing contemporary environmental threats. Environ Sci Pollut Res 23:3981–3983CrossRefGoogle Scholar
  32. González-Pleiter M, Gonzalo S, Rodea-Palomares I, Leganés F, Rosal R, Boltes K, Marco E, Fernández-Piñas F (2013) Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment. Water Res 47:2050–2064CrossRefGoogle Scholar
  33. Grenni P, Ancona V, Caraciollo AB (2018) Ecological effects of antibiotics on natural ecosystems: a review. Microchem J 136:25–39CrossRefGoogle Scholar
  34. Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, Andersson DI (2011) Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog 7(7):e1002158CrossRefGoogle Scholar
  35. Gutierrez IR, Watanabe N, Harter T, Glaser B, Radke M (2010) Effect of sulfonamide antibiotics on microbial diversity and activity in a Californian Mollic haploxeralf. J Soils Sediments 10:537–544CrossRefGoogle Scholar
  36. Heuer H, Schmitt H, Smalla K (2011) Antibiotic resistance gene spread due to manure application on agricultural fields. Curr Opin Microbiol 14:236–243CrossRefGoogle Scholar
  37. Hirth N, Topp E, Dörfler U, Stupperich E, Munch JC, Schroll R (2016) An effective bioremediation approach for enhanced microbial degradation of the veterinary antibiotic sulfamethazine in an agricultural soil. Chem Biol Technol Agric 3:29CrossRefGoogle Scholar
  38. Hou L, Yin G, Liu M, Zhou J, Zheng Y, Gao J, Zong H, Yang Y, Gao L, Tong C (2015) Effects of sulfamethazine on denitrification and the associated N2O release in estuarine and coastal sediments. Environ Sci Technol 49:326–333CrossRefGoogle Scholar
  39. Hruska K, Franek M (2012) Sulfonamides in the environment: a review and a case report. Veterinarni Medicina 57:1–35CrossRefGoogle Scholar
  40. Huang X, Feng Y, Hu C, Xia X, Yu D, Zou X (2016) Mechanistic model for interpreting the toxic effects of sulfonamides on nitrification. J Hazard Mater 305:123–129CrossRefGoogle Scholar
  41. Huerta B, Rodríguez-Mozaz S, Ponsatí L, Acuña V, Sabater S, Barceló D (2016) Determination of a broad spectrum of pharmaceuticals and endocrine disruptors in biofilm from a waste water treatment plant-impacted river. Sci Total Environ 540:241–249CrossRefGoogle Scholar
  42. Iglesias A, Nebot C, Vazquez BI, Miranda JM, Abuin CFM, Cepeda A (2014) Detection of veterinary drug residues in surface waters collected nearby farming areas in Galicia, North of Spain. Environ Sci Pollut Res 21:2367–2377CrossRefGoogle Scholar
  43. Jiang B, Li A, Cui D, Cai R, Ma F, Wang Y (2014) Biodegradation and metabolic pathway of sulfamethoxazole by Pseudomonas psychrophila HA-4, a newly isolated cold-adapted sulfamethoxazole-degrading bacterium. Appl Microbiol Biotechnol 98:4671–4681CrossRefGoogle Scholar
  44. Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic 8:1–13CrossRefGoogle Scholar
  45. Knapp CW, Dolfing J, Ehlert PAI, Graham DW (2010) Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol 44:580–587CrossRefGoogle Scholar
  46. Koike S, Krapac IG, Oliver HD, Yannarell AC, Chee-Sanford J, Aminov RI, Mackie RI (2007) Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-year period. Appl Environ Microbiol 73:4813–4823CrossRefGoogle Scholar
  47. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Response to comment on “Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. Streams, 1999−2000: a national reconnaissance”. Environ Sci Technol 36:1202–1211CrossRefGoogle Scholar
  48. Lacina P, Zenatova P, Vavrova M (2012) The assessment of contamination of selected river streams in the Czech Republic by human and veterinary drug residues with liquid and gas chromatography. Fresenius Environ Bull 21:3318–3324Google Scholar
  49. Larcher S, Yargeau V (2011) Biodegradation of sulfamethoxazole by individual and mixed bacteria. Appl Microbiol Biotechnol 91:211–218CrossRefGoogle Scholar
  50. Larsson DGJ, Andremont A, Bengtsson-Palme J, Brandt KK, de Roda Husman AM, Fagerstedt P, Fick J, Flach C-F, Gaze WH, Kuroda M, Kvint K, Laxminarayan R, Manaia CM, Nielsen KM, Plant L, Ploy M-C, Segovia C, Simonet P, Smalla K, Snape J, Topp E, van Hengel AJ, Verner-Jeffreys DW, Virta MPJ, Wellington EM, Wernersson A-S (2018) Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environ Int 117:132–138CrossRefGoogle Scholar
  51. Lopez P, Espinosa M, Greenberg B, Lacks SA (1987) Sulfonamide resistance in Streptomyces pneumoniae: DNA sequence of the gene encoding dihydropteorate synthase and characterization of the enzyme. J Bacteriol 169:4320-43-26Google Scholar
  52. Luo Y, Mao D, Rysz M, Zhou Q, Zhang H, Xu L, Alvarez PJJ (2010) Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environ Sci Technol 44:7220–7225CrossRefGoogle Scholar
  53. Manzetti S, Ghisi R (2014) The environmental release and fate of antibiotics. Marine Pollut Bull 79:7–15CrossRefGoogle Scholar
  54. Mao F, Liu X, Wu K, Zhou C, Si Y (2018) Biodegradation of sulfonamides by Shewanella oneidensis MR-1 and Shewanella sp. strain MR-4. Biodegradation 29:129–140CrossRefGoogle Scholar
  55. Martin-Laurent F, Marti R, Waglechner N, Wright GD, Topp E (2014) Draft genome sequence of the sulfonamide antibiotic-degrading Microbacterium sp. strain C448. Genome Announc.
  56. Maskell JP, Sefton AM, Hall LMC (1997) Mechanism of sulfonamide resistance in clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 41:2121–2126CrossRefGoogle Scholar
  57. Matongo S, Birungi G, Moodley B, Ndungu P (2015) Occurrence of selected pharmaceuticals in water and sediment of Umgeni River, KwaZulu-Natal, South Africa. Environ Sci Pollut Res 22:10298–10308CrossRefGoogle Scholar
  58. McKinney CW, Loftin KA, Meyer MT, Davis JG, Pruden A (2010) Tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence. Environ Sci Technol 44:6102–6109CrossRefGoogle Scholar
  59. Menz J, Schneider M, Kümmerer K (2015) Usage pattern-based exposure screening as a simple tool for the regional priority-setting in environmental risk assessment of veterinary antibiotics: a case study of north-western Germany. Chemosphere 127:42–48CrossRefGoogle Scholar
  60. Mora-Gómez J, Freixa A, Perujo N, Barral-Fraga L (2016) In: Romaní AM, Guasch H, Dolors M, Balaguer (eds) Aquatic biofilms: ecology, water quality and wastewater treatment. Caister Academic PressGoogle Scholar
  61. Mulla SI, Hu A, Sun Q, Li J, Suanona F, Ashfaq M, Yu C-P (2018) Biodegradation of sulfamethoxazole in bacteria from three different origins. J Environ Manag 206:93–102CrossRefGoogle Scholar
  62. Pei R, Kim SC, Carlson KH, Pruden A (2006) Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res 40:2427–2435CrossRefGoogle Scholar
  63. Peng X, Tan J, Yu Y, Wang Z (2008) Multiresidue determination of fluoroquinolone, sulfonamide, trimethoprim, and chloramphenicol antibiotics in urban waters in China. Environ Toxicol Chem 27:73–79CrossRefGoogle Scholar
  64. Perron MC, Juneau P (2011) Effect of endocrine disrupters on photosystem II energy fluxes of green algae and cyanobacteria. Environ Res 111:520–529CrossRefGoogle Scholar
  65. Petri W (2001) In: Hardman JG, Limbird LE (eds) Goodman and Gilman’s the pharmacological basis of therapeutics, 10th ed. McGraw-Hill, New York, pp 1171–1188Google Scholar
  66. Pinna MV, Casraldi P, Deiana P, Pusino A, Garau G (2012) Sorption behavior of sulfamethazine on unamended and manure-amended soils and short-term impact on soil microbial community. Ecotoxicol Environ Saf 84:234–242CrossRefGoogle Scholar
  67. Pruden A, Messner N, Pereyra L, Hanson RE, Hiibel SR, Reardon KF (2007) The effect of inoculum on the performance of sulfate-reducing columns treating heavy metal contaminated water. Water Res 41:904–914CrossRefGoogle Scholar
  68. Pruden A, Larsson DGJ, Amézquita A, Collignon P, Brandt KK, Graham DW, Lazorchak JM, Suzuki S, Silley P, Snape JR, Topp E, Zhang T, Zhu YG (2013) Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect 121:878–885CrossRefGoogle Scholar
  69. Ratsak C, Guhl B, Zühlke S, Delschen T (2013) Veterinärantibiotikarückstände in Gülle und Gärresten aus Nordrhein-Westfalen. Environ Sci Europe 25:7 CrossRefGoogle Scholar
  70. Reis AC, Cvancarova M, Liu Y, Lenz M, Hettich T, Kolvenbach BA, Corvini PFX, Nunes OC (2018) Biodegradation of sulfamethoxazole by a bacterial consortium of Achromobacter denitrificans PR1 and Leucobacter sp. GP. Appl Microbiol Biotechnol 102:10299–10314CrossRefGoogle Scholar
  71. Ricken B, Corvini PF, Cichocka D, Parisi M, Lenz M, Wyss D, Martínez-Lavanchy PM, Müller JA, Shahgaldian P, Tulli LG, Kohler HP, Kolvenbach BA (2013) Ipso-hydroxylation and subsequent fragmentation: a novel microbial strategy to eliminate sulfonamide antibiotics. Appl Environ Microbiol 79:5550–5558CrossRefGoogle Scholar
  72. Ricken B, Fellmann O, Kohler HP, Schäffer A, Corvini PFX, Kolvenbach BA (2015) Degradation of sulfonamide antibiotics by Microbacterium sp. strain BR1 – elucidating the downstream pathway. New Biotechnol 32:710–715CrossRefGoogle Scholar
  73. Ricken B, Kolvenbach BA, Bergesch C, Benndorf D, Kroll K, Strnad H, Vlcek C, Adaixo R, Hammes F, Shahgaldian P, Schäffer A, Kohler HPE, Corvini PFX (2017) FMNH2-dependent monooxygenase initiate catabolism of sulfonamides in Microbacterium sp. strain BR1 subsisting on sulfonamide antibiotics. Sci Rep 7:15783CrossRefGoogle Scholar
  74. Roose-Amsaleg C, Laverman AM (2016) Do antibiotics have environmental side-effects? Impact of synthetic antibiotics on biogeochemical processes. Environ Sci Pollut Res 23:4000–4012CrossRefGoogle Scholar
  75. Sapkota AR, Curriero FC, Gibson KE, Schwab KJ (2007) Antibiotic-resistant enterococci and fecal indicators in surface water and groundwater impacted by a concentrated swine feeding operation. Environ Health Perspect 115:1040–1045CrossRefGoogle Scholar
  76. Stoll C, Sidhu JPS, Tiehm A, Toze S (2012) Prevalence of clinically relevant antibiotic resistance genes in surface water samples collected from Germany and Australia. Environ Sci Technol 46:9716–9726CrossRefGoogle Scholar
  77. Storteboom H, Arabi M, Davis JG, Crimi B, Pruden A (2010) Tracking antibiotic resistance genes in the South Platte River basin using molecular signatures of urban, agricultural, and pristine sources. Environ Sci Technol 44:7397–7404CrossRefGoogle Scholar
  78. Tamtam F, Mercier F, Le Bot B, Eurin J, Dinh QT, Clément M, Chevreuil M (2008) Occurrence and fate of antibiotics in the Seine River in various hydrological conditions. Sci Total Environ 393:84–95CrossRefGoogle Scholar
  79. Tappe W, Herbst M, Hofmann D, Koeppchen S, Kummer S, Thiele B, Groeneweg J (2013) Degradation of sulfadiazine by Microbacterium lacus strain SDZm4, isolated from Lysimeters previously manured with slurry from sulfadiazine-medicated pigs. Appl Environ Microbiol 79:2572–2577CrossRefGoogle Scholar
  80. Topp E, Chapman R, Devers-Lamrani M, Hartmann A, Martin-Laurent F, Marti R, Sabourin L, Scott A, Sumaraha M (2013) Accelerated biodegradation of veterinary antibiotics in agricultural soil following long-term exposure, and isolation of a sulfamethazine-degrading Microbacterium sp. J Environ Qual 42:173–178CrossRefGoogle Scholar
  81. Vahjen W, Pietruszynska D, Starke IC, Zentek J (2015) High dietary zinc supplementation increases the occurrence of tetracycline and sulfonamide resistance genes in the intestine of weaned pigs. Gut Pathog 23:1–7Google Scholar
  82. Van der Grinten E, Pikkemaat MG, Van den Brandhof E-J, Stroomberg GJ, Kraak MHS (2010) Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics. Chemosphere 80:1–6CrossRefGoogle Scholar
  83. Veach AM, Bernot MJ (2011) Temporal variation of pharmaceuticals in an urban and agriculturally influenced stream. Sci Total Environ 409:4553–4563CrossRefGoogle Scholar
  84. Vila-Costa M, Gioia R, Aceña J, Pérez S, Casamayor EO, Dachs J (2017) Degradation of sulfonamides as a microbial resistance mechanism. Water Res 115:309–317CrossRefGoogle Scholar
  85. Wang J, Wang S (2018) Microbial degradation of sulfamethoxazole in the environment. Appl Microbiol Biotechnol 102:3573–3582CrossRefGoogle Scholar
  86. Wang S, Hu Y, Wang J (2018) Biodegradation of typical pharmaceutical compounds by a novel strain Acinetobacter sp. J Environ Manag 217:240–246CrossRefGoogle Scholar
  87. Wright GD (2010) Antibiotic resistance in the environment: a link to the clinic? Curr Opin Microbiol 13:589–594CrossRefGoogle Scholar
  88. Writer JH, Antweiler RC, Ferrer I, Ryan JN, Thurman EM (2013) In-stream attenuation of neuro-active pharmaceuticals and their metabolites. Environ Sci Technol 47:9781–9790CrossRefGoogle Scholar
  89. Wunder DB, Bosscher VA, Cok RC, Hozalski RM (2011) Sorption of antibiotics to biofilm. Water Res 45:2270–2280CrossRefGoogle Scholar
  90. Xia S, Jia R, Feng F, Xie K, Li H, Jing D, Xu X (2012) Effect of solids retention time on antibiotics removal performance and microbial communities in an A/O-MBR process. Bioresour Technol 106:36–43CrossRefGoogle Scholar
  91. Yang LH, Ying GG, Su HC, Stauber JL, Adams MS, Binet MT (2008) Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata. Environ Toxicol Chem 27:1201–1208CrossRefGoogle Scholar
  92. Yargau V, Lopata A, Metcalfe C (2007) Pharmaceuticals in the Yamaska River, Quebec, Canada. Service de l’étude du milieu aquatique. 1985. La Yamaska, une rivière à rajeunir. Ministère de l’environnement du Québec, Direction générale de l’assainissement de l’eau, Direction des études du milieu aquatique, QuébecGoogle Scholar
  93. Yergeau E, Sanschagrin S, Waiser MJ, Lawrence JR, Greer CW (2012) Sub-inhibitory concentrations of different pharmaceutical products affect the meta-transcriptome of river biofilm communities cultivated in rotating annular reactors. Environ Microb Rep 4:350–359CrossRefGoogle Scholar
  94. Zhang WW, Wen YY, Niu ZL, Yin K, Xu DX, Chen LX (2012a) Isolation and characterization of sulfonamide-degrading bacteria Escherichia sp. HS21 and Acinetobacter sp. HS51. World J Microbiol Biotechnol 28:447–452CrossRefGoogle Scholar
  95. Zhang WW, Xu D, Niu ZL, Yin K, Liu P, Chen LX (2012b) Isolation and characterization of Pseudomonas sp. DX7 capable of degrading sulfadoxine. Biodegradation 23:431–439CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fabrice Martin-Laurent
    • 1
    Email author
  • Edward Topp
    • 2
  • Loren Billet
    • 1
  • Isabelle Batisson
    • 3
  • Cédric Malandain
    • 4
  • Pascale Besse-Hoggan
    • 5
  • Soizic Morin
    • 6
  • Joan Artigas
    • 3
  • Chloé Bonnineau
    • 7
  • Laura Kergoat
    • 7
  • Marion Devers-Lamrani
    • 1
  • Stéphane Pesce
    • 7
  1. 1.AgroSup Dijon, INRA, Univ. BourgogneUniv. Bourgogne Franche-ComtéDijonFrance
  2. 2.Agriculture and Agri-Food CanadaUniversity of Western OntarioLondonCanada
  3. 3.CNRS, Laboratoire Microorganismes: Génome et EnvironnementUniversité Clermont AuvergneClermont–FerrandFrance
  4. 4.ENOVEOLyonFrance
  5. 5.CNRS, Sigma Clermont, Institut de Chimie de Clermont-FerrandUniversité Clermont AuvergneClermont–FerrandFrance
  6. 6.Irstea, UR EABXCestasFrance
  7. 7.Irstea, UR RiverLyLyon-VilleurbanneFrance

Personalised recommendations