Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 18, pp 18191–18199 | Cite as

Unexplored aspects of unipolar ionizer characteristics in context of indoor air cleaning

  • Pallavi Khandare
  • Manish Joshi
  • Amruta Nakhwa
  • Arshad Khan
  • Mariam Mariam
  • Balvinder Kaur SapraEmail author
Research Article

Abstract

Indoor air pollution affects human health via acute and chronic exposure. Traditionally, filter systems have been used for indoor air cleaning; however, issues like filter life and routine maintenance remain associated with their operation. Ionizers are emerging as a potential candidate for indoor air cleaning. A major part of previous studies intended to “project ionizers as air cleaners” focus on particle removal in different conditions. But indices representing charge effects have not been given due attention. This study focuses on the measurement of spatial profile of ion concentration and aerosol current around a single ionizer and a circular array of five ionizers. The distribution of ion concentration around the system/array was found to be isotropic in the absence of ventilation. Aerosol current values under ionizer action have been measured for the first time. Results obtained from this work could be instrumental for the design of future ionizer systems with improved efficacy.

Keywords

Aerosol current Air cleaning Charge Ionizer 

Notes

References

  1. Alonso M, Martin MI, Alguacil FJ (2006) The measurement of charging efficiencies and losses of aerosol nanoparticles in a corona charger. J Electrost 64:203–214CrossRefGoogle Scholar
  2. Arif S, Branken DJ, Everson RC, Neomagus HWJP, Grange LAL, Arif A (2016) CFD modelling of particle charging and collection in electrostatic precipitators. J Electrost 84:10–22CrossRefGoogle Scholar
  3. Biskos K, Reavell E, Collings N (2004) Monte Carlo simulation of unipolar diffusion charging for spherical and non-spherical particles. J Aerosol Sci 36:707–730CrossRefGoogle Scholar
  4. Biskos G, Reavell K, Collings N (2005) Unipolar diffusion charging of aerosol particles in the transition regime. J Aerosol Sci 36:247–265CrossRefGoogle Scholar
  5. Brock JR (1969) Aerosol charging: the role of image force. J Appl Phys 41:843–844CrossRefGoogle Scholar
  6. Brock JR (1970) Unipolar diffusion charging of aerosols and the image force. J Colloid Interface Sci 33:473–474CrossRefGoogle Scholar
  7. Carlsen L, Bruggemann R, Kenessov B (2018) Use of partial order in environmental pollution studies demonstrated by urban BTEX air pollution in 20 major cities worldwide. Sci Total Environ 610-611:234–243CrossRefGoogle Scholar
  8. Chakraborty A, Mandariya AK, Chakraborti R, Gupta T, Tripathi SN (2018) Realtime chemical characterization of post monsoon organic aerosols in a polluted urban city: sources, composition, and comparison with other seasons. Environ Pollut 232:310–321CrossRefGoogle Scholar
  9. Daniels SL (2002) On the ionization of air for removal of noxious effluvia (air ionization of indoor environments for control of volatile and particulate contaminants with non thermal plasmas generated by dielectric-barrier discharge). IEEE Trans Plasma Sci 30(4):1471–1481CrossRefGoogle Scholar
  10. Davidson SW, Gentry JW (1985) Differences in diffusion charging of dielectric and conducting ultrafine aerosols. Aerosol Sci Technol 4:157–163CrossRefGoogle Scholar
  11. Delory GT, Farrell WM, Atreya SK, Renno NO, Wong AS, Cummer SA, Sentman DD, Marshall JR, Rafkin SCR, Catling DC (2006) Oxidant enhancement in martian dust devils and storms: storm electric fields and electron dissociative attachment. Astrobiology. 6(3):451–462CrossRefGoogle Scholar
  12. Farrell WM, Delory GT et al (2006) The harsh electro-chemical environment in martian dust storms. Seventh International conference on Mars, California, U.S.A.Google Scholar
  13. Fatokun FOJ, Morawska L, Jamriska M, Jayaratne ER (2008) Application of aerosol electrometer for ambient particle charge measurements. Atmos Environ 42:8827–8830CrossRefGoogle Scholar
  14. Fuchs NA (1963) On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere. Geofisica Pura e Applicata 56:185–193CrossRefGoogle Scholar
  15. Gentry JW, Brock JR (1967) Unipolar diffusion charging of small aerosol particles. J Chem Phys 47:64–69CrossRefGoogle Scholar
  16. Grinshpun SA, Mainelis G, Trunov M, Adhikari A, Reponen T, Willeke K (2005) Evaluation of ionic air purifiers for reducing aerosol exposure in confined indoor spaces. Indoor Air 15:235–245CrossRefGoogle Scholar
  17. Grinshpun SA, Adhikari A, Honda T, Kim KY, Toivola M, Rao KKR, Reponen T (2007) Control of contaminants in indoor air: combining the particle concentration reduction with microbial inactivation. Environ Sci Technol 41:606–612CrossRefGoogle Scholar
  18. Han B, Hudda N, Ning Z, Kim YJ, Sioutas C (2009) Efficient collection of atmospheric aerosols with a particle concentrator-electrostatic precipitator sampler. Aerosol Sci Technol 43:757–766CrossRefGoogle Scholar
  19. Hanley J, Ensor D, Smith D, Sparks L (1994) Fractional aerosol filtration efficiency of in-duct ventilation air cleaners. Indoor Air 4:169–178CrossRefGoogle Scholar
  20. Hernandez-Sierra A, Alguacil FJ, Alonso M (2003) Unipolar charging of nanometer aerosol particles in a corona ionizer. J Aerosol Sci 34(6):733–745CrossRefGoogle Scholar
  21. Hinds WC (1999) Aerosol Technology: properties, behaviour, and measurement of airborne particles, 2nd edn. New YorkGoogle Scholar
  22. Hoppel WA, Frick GM (1986) Ion-aerosol attachment coefficients and the steady-state charge distribution on aerosols in a bipolar ion environment. Aerosol Sci Technol 5:1–21CrossRefGoogle Scholar
  23. Intra P, Tippayawong N (2006) Corona ionizer for unipolar diffusion charging of nanometer aerosol particles. 29th Electrical engineering conference, Pattaya, Thailand, 9–10 November, 2006Google Scholar
  24. Jamriska M, Morawska L, Ensor DS (2003) Control strategies for sub micrometer particles indoors: model study of air filtration and ventilation. Indoor Air 13:96–105CrossRefGoogle Scholar
  25. Joshi M, Sapra BK, Khan A, Kothalkar PS, Mayya YS (2010) Thoron (Rn-220) decay products removal in poorly ventilated environments using unipolar ionizers: dosimetric implications. Sci Total Environ 408(23):5701–5706CrossRefGoogle Scholar
  26. Joshi M, Sapra BK, Kothalkar P, Khan A, Modi R, Mayya YS (2011) Implications of polarity of unipolar ionisers on reduction of effective dose attributable to thoron progeny. Radiat Prot Dosim 145(2–3):256–259CrossRefGoogle Scholar
  27. Joshi M, Khan A, Anand S, Sapra BK (2016) Size evolution of ultrafine particles: differential signatures of normal and episodic events. Environ Pollut 208:354–360CrossRefGoogle Scholar
  28. Kirsch AA, Zagnit’ko AV (1981) Diffusion charging of submicrometer aerosol particles by unipolar ions. J Colloid Interface Sci 80:111–117CrossRefGoogle Scholar
  29. Lee BU, Yermakov M, Grinshpun SA (2004) Removal of fine and ultrafine particles from indoor air environments by the unipolar ion emission. Atmos Environ 38:4815–4823CrossRefGoogle Scholar
  30. Li L, Chen DR, Tsai PJ (2009) Evaluation of an electrical aerosol detector (EAD) for the aerosol integral parameter measurement. J Electrost 67:765–773CrossRefGoogle Scholar
  31. Liu BYH, Bademosi F (1971) A universal law for transfer processes in Knudsen aerosols (unpublished doctoral dissertation). Particle Technology Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MNGoogle Scholar
  32. Liu BYH, Pui DYH (1977) On unipolar diffusion charging of aerosols in the continuum regime. J Colloid Interface Sci 58:142–149CrossRefGoogle Scholar
  33. Marquard A, Kasper M, Meyer J, Kasper G (2005) Nanoparticle charging efficiencies and related charging conditions in a wire-tube ESP at DC energization. J Electrost 63:693–698CrossRefGoogle Scholar
  34. Mayya YS, Sapra B, Khan A, Sunny F (2004) Aerosol removal by unipolar ionization in indoor environments. J Aerosol Sci 35:923–941CrossRefGoogle Scholar
  35. Medved A, Dorman F, Kaufman SL, Pocher A (2000) A new corona-based charger for aerosol particles. J Aerosol Sci 31:616–617CrossRefGoogle Scholar
  36. Miri M, Derakhshan Z, Allahabadi A, Ahmadi E, Conti GO, Ferrante M, Aval HE (2016) Mortality and morbidity due to exposure to outdoor air pollution in Mashhad metropolis, Iran. The AirQ model approach. Environ Res 151:451–457CrossRefGoogle Scholar
  37. Mølgaard B, Koivisto AJ, Hussein T, Hämeri K (2014) A new clean air delivery rate test applied to five portable indoor air cleaners. Aerosol Sci Technol 48(4):409–417.  https://doi.org/10.1080/02786826.2014.883063 CrossRefGoogle Scholar
  38. Natanson GL (1960) On the theory of the charging of a microscopic aerosol particles as a result of capture of gas ions. Zh Tekh Fiz 30:573–588 (Sov Phys Tech Phys, Engl Transl 5:538–551)Google Scholar
  39. Owen MK, Ensor DS, Sparks LE (1992) Airborne particle sizes and sources found in indoor air. Atmos Environ 26A(12):2149–2162CrossRefGoogle Scholar
  40. Park D, An M, Hwang J (2007) Development and performance test of a unipolar diffusion charger for real-time measurements of submicron aerosol particles having a log-normal size distribution. J Aerosol Sci 38(4):420–430CrossRefGoogle Scholar
  41. Patange OS, Ramanathan N, Rehman IH, Tripathi SN, Misra A, Kar A, Graham E, Singh L, Bahadur R, Ramanathan V (2015) Reductions in indoor black carbon concentrations from improved biomass stoves in rural India. Environ Sci Technol 49:4749–4756.  https://doi.org/10.1021/es506208x CrossRefGoogle Scholar
  42. Porteiro J, Martin R, Granada E, Patino D (2016) Three dimensional model of electrostatic precipitators for the estimation of their particle collection efficiency. Fuel Process Technol 143:86–99CrossRefGoogle Scholar
  43. Ram K, Sarin MM, Tripathi SN (2012) Temporal trends in atmospheric PM2.5, PM10, elemental carbon, organic carbon, water-soluble organic carbon, and optical properties: impact of biomass burning emissions in the Indo-Gangetic Plain. Environ Sci Technol 46:686–695.  https://doi.org/10.1021/es202857w CrossRefGoogle Scholar
  44. Richardson G, Harwood DJ, Eick SA, Dobbs F, Ros’en KG (2001) Reduction of fine airborne particulates (PM3) in a small city centre office, by altering electrostatic forces. Sci Total Environ 269:145–155CrossRefGoogle Scholar
  45. Romay JF, Pui DYH (1992) On the combination coefficient of positive ions with ultrafine neutral particles in the transition and free molecule regimes. Aerosol Sci Technol 17(2):134–147CrossRefGoogle Scholar
  46. Romieu I, Gouveia N, Cifuentes LA, de Leon AP, Junger W, Vera J, Strappa V, Hurtado-Díaz M, Miranda-Soberanis V, Rojas-Bracho L, Carbajal-Arroyo L, Tzintzun-Cervantes G (2012) HEI Health Review Committee. Multicity study of air pollution and mortality in Latin America (the ESCALA study). Res Rep Health Eff Inst 171:5–86Google Scholar
  47. Samek L (2016) Overall human mortality and morbidity due to exposure to air pollution. Int J Occup Med Environ Health 29(3):417–426.  https://doi.org/10.13075/ijomeh.1896.00560 CrossRefGoogle Scholar
  48. Sapra BK, Kothalkar PS, Joshi M, Khan A, Mayya YS (2013) Mitigating particulates emitted by mosquito coils using unipolar ionizers: implications to deposition in human respiratory tract system. Indoor Built Environ 22(2):347–359CrossRefGoogle Scholar
  49. Shi B, Ekberg L (2015) Ionizer assisted air filtration for collection of submicron and ultrafine particles-evaluation of long-term performance and influencing factors. Environ Sci Technol 49:6891–6898.  https://doi.org/10.1021/acs.est.5b00974 CrossRefGoogle Scholar
  50. Shiue A, Hu SC (2011) Contaminant particles removal by negative air ionic cleaner in industrial mini environment for IC manufacturing processes. Build Environ 46:1537–1544CrossRefGoogle Scholar
  51. Sow M, Lemaitre P (2015) The effect of electrostatic charges on the removal of radioactive aerosols in the atmosphere. J Phys Conf Ser 646:012011.  https://doi.org/10.1088/1742-6596/646/1/012011 CrossRefGoogle Scholar
  52. Tian CY, Xiang X, Juan J, Sun K, Song Y, Cao Y, Hu Y (2017) Fine particulate air pollution and hospital visits for asthma in Beijing. Environ Pollut 230:227–233CrossRefGoogle Scholar
  53. Traynor GW, Apte MG, Carruthers AR, Dlllworth JF, Grlmsrud DT, Gundel LA (1987) Indoor air pollution due to emissions from wood-burning stoves. Environ Sci Technol 21(7):691–697CrossRefGoogle Scholar
  54. Venkatraman C, Sagar AD, Habib G, Lam N, Smith KR (2010) The Indian national initiative for advanced biomass cookstoves: the benefits of clean combustion. Energy Sustain Dev 14(2):63–72CrossRefGoogle Scholar
  55. Whitby KT (1961) Generator for producing high concentration of small ions. Rev Sci Instrum 32(12):1351–1355CrossRefGoogle Scholar
  56. White HJ (1951) Particle charging in electrostatic precipitation. AIEEE Trans 70:1186–1191Google Scholar
  57. Wong CM, Vichit-Vadakan N, Vajanapoom N, Ostro B, Thach TQ, Chau PY, Chan EK, Chung RY, Ou CQ, Yang L, Peiris JS, Thomas GN, Lam TH, Wong TW, Hedley AJ, Kan H, Chen B, Zhao N, London SJ, Song G, Chen G, Zhang Y, Jiang L, Qian Z, He Q, Lin HM, Kong L, Zhou D, Liang S, Zhu Z, Liao D, Liu W, Bentley CM, Dan J, Wang B, Yang N, Xu S, Gong J, Wei H, Sun H, Qin Z (2010) HEI Health Review Committee. Public health and air pollution in Asia (PAPA): a combined analysis of four studies of air pollution and mortality. Res Rep Health Eff Inst 154:377–418Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Pallavi Khandare
    • 1
  • Manish Joshi
    • 1
  • Amruta Nakhwa
    • 1
  • Arshad Khan
    • 1
  • Mariam Mariam
    • 1
  • Balvinder Kaur Sapra
    • 1
    Email author
  1. 1.Radiological Physics and Advisory DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations