Synthetic melanin nanoparticles as peroxynitrite scavengers, photothermal anticancer and heavy metals removal platforms

  • Shaimaa Maher
  • Marwa Mahmoud
  • Moustafa Rizk
  • Haitham KalilEmail author
Nanotechnology, Nanopollution, Nanotoxicology and Nanomedicine (NNNN)


Melanin is a ubiquitous natural polyphenolic pigment with versatile applications including physiological functions. This polymeric material is found in a diversity of living organisms from bacteria to mammals. The biocompatibility and thermal stability of melanin nanoparticles make them good candidates to work as free radical scavengers and photothermal anticancer substrates. Research studies have identified melanin as an antioxidative therapeutic agent and/or reactive oxygen species (ROS) scavenger that includes neutralization of peroxynitrite. In addition, melanin nanoparticles have emerged as an anticancer photothermal platform that has the capability to kill cancer cells. Recently, melanin nanoparticles have been successfully used as chelating agents to purify water from heavy metals, such as hexavalent chromium. This review article highlights some selected aspects of cutting-edge melanin applications. Herein, we will refer to the recent literature that addresses melanin nanoparticles and its useful physicochemical properties as a hot topic in biomaterial science. It is expected that the techniques of Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and time-resolved Electron Paramagnetic Resonance (EPR) will have a strong impact on the full characterization of melanin nanoparticles and the subsequent exploration of their physiological and chemical mechanisms.


Melanin nanoparticles Peroxynitrite scavengers Photothermal anticancer platform Heavy metals removal agent ROS Eumelanin 



We would like to thank Dr. Keith R. Miller and Mrs. Linda Scott for their valuable feedbacks on some aspects of this paper.


  1. Akeo K, Amaki S, Suzuki T, Hiramitsu T (2000) Melanin granules prevent the cytotoxic effects of l-DOPA on retinal pigment epithelial cells in vitro by regulation of NO and superoxide radicals. Pigment Cell Res 13:80–88CrossRefGoogle Scholar
  2. Aksu Z, Özer D, Ekiz HI, Kutsal T, Çaglar A (1996) Investigation of biosorption of chromium (VI) on Cladophora crispata in two-staged batch reactor. Environ Technol 17:215–220CrossRefGoogle Scholar
  3. Bayachou M, Altawallbeh G, Kalil H, Wojciechowski S, Bose T (2015) Methods of peroxynitrite synthesis in the context of the development and validation of peroxynitrite sensors. In: Peroxynitrite detection in biological media. pp 48–62Google Scholar
  4. Bernsmann F, Ponche A, Ringwald C, Hemmerlé J, Raya J, Bechinger B, Voegel JC, Schaaf P, Ball V (2009) Characterization of dopamine−melanin growth on silicon oxide. J Phys Chem C 113:8234–8242. CrossRefGoogle Scholar
  5. Bernsmann F, Voegel JC, Ball V (2011) Different synthesis methods allow to tune the permeability and permselectivity of dopamine-melanin films to electrochemical probes. Electrochim Acta 56:3914–3919. CrossRefGoogle Scholar
  6. Calace N, Di Muro A, Nardi E, Petronio B, Pietroletti M (2002) Adsorption isotherms for describing heavy-metal retention in paper mill sludges. Ind Eng Chem Res 41:5491–5497CrossRefGoogle Scholar
  7. Chakravarti A, Chowdhury S, Chakrabarty S, Chakrabarty T, Mukherjee D (1995) Liquid membrane multiple emulsion process of chromium (VI) separation from waste waters. Colloids Surf A Physicochem Eng Asp 103:59–71CrossRefGoogle Scholar
  8. Costa TG, Younger R, Poe C, Farmer PJ, Szpoganicz B (2012) Studies on synthetic and natural melanin and its affinity for Fe(III). Ion Bioinorg Chem Appl 2012:712840. Google Scholar
  9. Cuong AM, Le Na NT, Thang PN, Diep TN, Thuy LB, Thanh NL, Thang ND (2018) Melanin-embedded materials effectively remove hexavalent chromium (Cr VI) from aqueous solution. Environ Health Prev Med 23:9CrossRefGoogle Scholar
  10. Daiber A, Zou M-H, Bachschmid M, Ullrich V (2000) Ebselen as a peroxynitrite scavenger in vitro and ex vivo. Biochem Pharmacol 59:153–160CrossRefGoogle Scholar
  11. Dobry AS, Fisher DE (2018) The biology of pigmentation. In: Melanoma. Springer, pp 1–30Google Scholar
  12. Drel VR, Pacher P, Vareniuk I, Pavlov I, Ilnytska O, Lyzogubov VV, Tibrewala J, Groves JT, Obrosova IG (2007) A peroxynitrite decomposition catalyst counteracts sensory neuropathy in streptozotocin-diabetic mice. Eur J Pharmacol 569:48–58. CrossRefGoogle Scholar
  13. Dzierzega-Lecznar A, Stepien K, Chodurek E, Kurkiewicz S, Swiatkowska L, Wilczok T (2003) Pyrolysis-gas chromatography/mass spectrometry of peroxynitrite-treated melanins. J Anal Appl Pyrolysis 70:457–467. CrossRefGoogle Scholar
  14. Enochs WS, Petherick P, Bogdanova A, Mohr U, Weissleder R (1997) Paramagnetic metal scavenging by melanin: MR imaging. Radiology 204:417–423. CrossRefGoogle Scholar
  15. Fedorow H, Tribl F, Halliday G, Gerlach M, Riederer P, Double KL (2005) Neuromelanin in human dopamine neurons: comparison with peripheral melanins and relevance to Parkinson's disease. Prog Neurobiol 75:109–124. CrossRefGoogle Scholar
  16. Feelisch M, Ostrowski J, Noack E (1989) On the mechanism of NO release from sydnonimines. J Cardiovasc Pharmacol 14:S13–S22. CrossRefGoogle Scholar
  17. Gautam RK, Sharma SK, Mahiya S, Chattopadhyaya MC (2014) Contamination of heavy metals in aquatic media: transport, toxicity and technologies for remediation heavy metals in water: presence, removal and safety:1–24Google Scholar
  18. Gidanian S, Farmer PJ (2002) Redox behavior of melanins: direct electrochemistry of dihydroxyindole-melanin and its Cu and Zn adducts. J Inorg Biochem 89:54–60. CrossRefGoogle Scholar
  19. Gilad E, Cuzzocrea S, Zingarelli B, Salzman AL, Szabó C (1997) Melatonin is a scavenger of peroxynitrite. Life Sci 60:PL169–PL174CrossRefGoogle Scholar
  20. Heijnen C, Haenen G, Van Acker F, Van der Vijgh W, Bast A (2001) Flavonoids as peroxynitrite scavengers: the role of the hydroxyl groups. Toxicol in Vitro 15:3–6CrossRefGoogle Scholar
  21. Hong L, Simon JD (2005) Physical and chemical characterization of Iris and choroid melanosomes isolated from newborn and mature cows. Photochem Photobiol 81:517–523. CrossRefGoogle Scholar
  22. Hong L, Liu Y, Simon JD (2004) Binding of metal ions to melanin and their effects on the aerobic reactivity. Photochem Photobiol 80:477–481CrossRefGoogle Scholar
  23. Hooper D, Scott G, Zborek A, Mikheeva T, Kean R, Koprowski H, Spitsin S (2000) Uric acid, a peroxynitrite scavenger, inhibits CNS inflammation, blood–CNS barrier permeability changes, and tissue damage in a mouse model of multiple sclerosis. FASEB J 14:691–698CrossRefGoogle Scholar
  24. Ito S, Wakamatsu K (2003) Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res 16:523–531. CrossRefGoogle Scholar
  25. Jiang Q, Luo Z, Men Y, Yang P, Peng H, Guo R, Tian Y, Pang Z, Yang W (2017) Red blood cell membrane-camouflaged melanin nanoparticles for enhanced photothermal therapy. Biomaterials 143:29–45. CrossRefGoogle Scholar
  26. Jing L, Qu H, Wu D, Zhu C, Yang Y, Jin X, Zheng J, Shi X, Yan X, Wang Y (2018) Platelet-camouflaged nanococktail: simultaneous inhibition of drug-resistant tumor growth and metastasis via a cancer cells and tumor vasculature dual-targeting strategy. Theranostics 8:2683–2695. CrossRefGoogle Scholar
  27. Kalil H, Bayachou M (2014) Graphene-based nanostructured interfaces for selective and sensitive peroxynitrite detection. Nitric Oxide 42:128. CrossRefGoogle Scholar
  28. Kalil H, Maher S, Bose T, Al-Mahmoud O, Kay C, Bayachou M (2017) Synthetic melanin films as potential interfaces for peroxynitrite detection and quantification. ECS Trans 80:1447–1458. CrossRefGoogle Scholar
  29. Kalil H, Maher S, Bose T, Bayachou M (2018) Manganese oxide/hemin-functionalized graphene as a platform for peroxynitrite sensing. J Electrochem Soc 165:g3133–g3140. CrossRefGoogle Scholar
  30. Kang ET, Neoh KG, Tan KL (1993) X-ray photoelectron spectroscopic studies of electroactive polymers. In: Polymer characteristics. Advances in polymer science. Springer Berlin Heidelberg, Berlin, pp 135–190. CrossRefGoogle Scholar
  31. Kim IG, Nam HJ, Ahn HJ, Jung DY (2011) Electrochemical growth of synthetic melanin thin films by constant potential methods. Electrochim Acta 56:2954–2959. CrossRefGoogle Scholar
  32. Kollias N, Sayre RM, Zeise L, Chedekel MR (1991) New trends in photobiology: photoprotection by melanin. J Photochem Photobiol B 9:135–160CrossRefGoogle Scholar
  33. Lee CS, Lee CS, Ko HH, Song JH, Han ES (2002) Effect of R-(−)-deprenyl and harmaline on dopamine- and peroxynitrite-induced membrane permeability transition in brain mitochondria. Neurochem Res 27:215–224. CrossRefGoogle Scholar
  34. Levrand S, Pesse B, Feihl F, Waeber B, Pacher P, Rolli J, Schaller MD, Liaudet L (2005) Peroxynitrite is a potent inhibitor of NF-{kappa}B activation triggered by inflammatory stimuli in cardiac and endothelial cell lines. J Biol Chem 280:34878–34887. CrossRefGoogle Scholar
  35. Levrand S, Vannay-Bouchiche C, Pesse B, Pacher P, Feihl F, Waeber B, Liaudet L (2006) Peroxynitrite is a major trigger of cardiomyocyte apoptosis in vitro and in vivo. Free Radic Biol Med 41:886–895. CrossRefGoogle Scholar
  36. Li J, Loukili N, Rosenblatt-Velin N, Pacher P, Feihl F, Waeber B, Liaudet L (2013) Peroxynitrite is a key mediator of the cardioprotection afforded by ischemic postconditioning in vivo. PLoS One 8:e70331. CrossRefGoogle Scholar
  37. Liaudet L, Rosenblatt-Velin N, Pacher P (2013) Role of peroxynitrite in the cardiovascular dysfunction of septic shock. Curr Vasc Pharmacol 11:196–207Google Scholar
  38. Liu Y, Hong L, Kempf VR, Wakamatsu K, Ito S, Simon JD (2004) Ion-exchange and adsorption of Fe (III) by Sepia melanin. Pigment Cell Res 17:262–269. CrossRefGoogle Scholar
  39. Liu Y, Hong L, Wakamatsu K, Ito S, Adhyaru B, Cheng CY, Bowers CR, Simon JD (2005) Comparison of structural and chemical properties of black and red human hair melanosomes. Photochem Photobiol 81:135–144. CrossRefGoogle Scholar
  40. Liu Y, Ai K, Liu J, Deng M, He Y, Lu L (2013) Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater 25:1353–1359. CrossRefGoogle Scholar
  41. Liu Y, Ai K, Ji X, Askhatova D, Du R, Lu L, Shi J (2017) Comprehensive insights into the multi-antioxidative mechanisms of melanin nanoparticles and their application to protect brain from injury in ischemic stroke. J Am Chem Soc 139:856–862. CrossRefGoogle Scholar
  42. Loukili N, Rosenblatt-Velin N, Li J, Clerc S, Pacher P, Feihl F, Waeber B, Liaudet L (2011) Peroxynitrite induces HMGB1 release by cardiac cells in vitro and HMGB1 upregulation in the infarcted myocardium in vivo. Cardiovasc Res 89:586–594. CrossRefGoogle Scholar
  43. Lydén A, Larsson BS, Lindquist NG (1984) Melanin affinity of manganese. Acta Pharmacol Toxicol 55:133–138CrossRefGoogle Scholar
  44. Meredith P, Sarna T (2006) The physical and chemical properties of eumelanin. Pigment Cell Res 19:572–594. CrossRefGoogle Scholar
  45. Meyskens F, Gidanian S, Farmer PJ (2006) Pro-oxidant properties of melanosomal melanin from melanoma origin. Free Radic Biol Med 41:S111–S111Google Scholar
  46. Mohan D, Pittman CU Jr (2006) Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. J Hazard Mater 137:762–811. CrossRefGoogle Scholar
  47. Mohan D, Singh KP, Singh VK (2006) Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. J Hazard Mater 135:280–295CrossRefGoogle Scholar
  48. Mukhopadhyay P, Rajesh M, Bátkai S, Kashiwaya Y, Haskó G, Liaudet L, Szabó C, Pacher P (2009) Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. Am J Physiol Heart Circ Physiol 296:H1466–H1483. CrossRefGoogle Scholar
  49. Ohgami N, Yamanoshita O, Thang ND, Yajima I, Nakano C, Wenting W, Ohnuma S, Kato M (2015) Carcinogenic risk of chromium, copper and arsenic in CCA-treated wood. Environ Pollut 206:456–460. CrossRefGoogle Scholar
  50. Oprea R, Peteu SF, Subramanian P, Qi W, Pichonat E, Happy H, Bayachou M, Boukherroub R, Szunerits S (2013) Peroxynitrite activity of hemin-functionalized reduced graphene oxide. Analyst 138:4345–4352. CrossRefGoogle Scholar
  51. Pacher P, Szabo C (2006) Role of peroxynitrite in the pathogenesis of cardiovascular complications of diabetes. Curr Opin Pharmacol 6:136–141. CrossRefGoogle Scholar
  52. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424. CrossRefGoogle Scholar
  53. Padmaja S, Madison SA (1999) Reaction of peroxynitrite with the melanin precursor, 5,6-dihydroxyindole-2-carboxylic acid. Res Chem Intermed 25:441–458. CrossRefGoogle Scholar
  54. Pagilla KR, Canter LW (1999) Laboratory studies on remediation of chromium-contaminated soils. J Environ Eng 125:243–248CrossRefGoogle Scholar
  55. Panessa B, Zadunaisky J (1981) Pigment granules: a calcium reservoir in the vertebrate eye. Exp Eye Res 32:593–604CrossRefGoogle Scholar
  56. Peteu SF, Banihani S, Gunesekera MM, Peiris P, Sicuia OA, Bayachou M (2011) Peroxynitrite and nitroxidative stress: detection probes and micro-sensors. A case of a nanostructured catalytic film. In: Oxidative stress: diagnostics, prevention, and therapy, vol 1083. ACS symposium series, vol 1083. American Chemical Society, pp 311–339.
  57. Regoli F, Winston GW (1999) Quantification of total oxidant scavenging capacity of antioxidants for peroxynitrite, peroxyl radicals, and hydroxyl radicals. Toxicol Appl Pharmacol 156:96–105. CrossRefGoogle Scholar
  58. Salomäki M, Tupala M, Parviainen T, Leiro J, Karonen M, Lukkari J (2016) Preparation of thin melanin-type films by surface-controlled oxidation. Langmuir 32:4103–4112CrossRefGoogle Scholar
  59. Sarna T, Plonka PM (2005) Biophysical studies of melanin. In: Biomedical EPR, part A: free radicals, metals, medicine, and physiology. Springer, pp 125–146Google Scholar
  60. Schraermeyer U, Heimann K (1999) Current understanding on the role of retinal pigment epithelium and its pigmentation. Pigment Cell Res 12:219–236CrossRefGoogle Scholar
  61. Seagle BL, Rezai KA, Gasyna EM, Kobori Y, Rezaei KA, Norris JR Jr (2005) Time-resolved detection of melanin free radicals quenching reactive oxygen species. J Am Chem Soc 127:11220–11221. CrossRefGoogle Scholar
  62. Seaman JC, Bertsch PM, Schwallie L (1999) In situ Cr (VI) reduction within coarse-textured, oxide-coated soil and aquifer systems using Fe (II) solutions. Environ Sci Technol 33:938–944CrossRefGoogle Scholar
  63. Simon JD (2000) Spectroscopic and dynamic studies of the epidermal chromophores trans-urocanic acid and eumelanin. Acc Chem Res 33:307–313. CrossRefGoogle Scholar
  64. Singha B, Naiya TK, kumar Bhattacharya A, Das SK (2011) Cr (VI) ions removal from aqueous solutions using natural adsorbents–FTIR studies. J Environ Prot 2:729–735CrossRefGoogle Scholar
  65. Slominski RM, Zmijewski MA, Slominski AT (2015) The role of melanin pigment in melanoma. Exp Dermatol 24:258–259. CrossRefGoogle Scholar
  66. Solano F (2017) Melanin and melanin-related polymers as materials with biomedical and biotechnological applications—cuttlefish ink and mussel foot proteins as inspired biomolecules. Int J Mol Sci 18:1561CrossRefGoogle Scholar
  67. Stepień K, Wilczok A, Zajdel A, Dzierzega-Lecznar A, Wilczok T (1999) Peroxynitrite mediated linoleic acid oxidation and tyrosine nitration in the presence of synthetic neuromelanins. Acta Biochim Pol 47:931–940Google Scholar
  68. Stępień K, Zajdel A, Wilczok A, Wilczok T, Grzelak A, Mateja A, Soszyński M, Bartosz G (2000) Dopamine-melanin protects against tyrosine nitration, tryptophan oxidation and Ca (2+)-ATPase inactivation induced by peroxynitrite. Biochim Biophys Acta 1523:189–195CrossRefGoogle Scholar
  69. Subianto S, Will G, Meredith P (2005) Electrochemical synthesis of melanin free-standing films. Polymer 46:11505–11509. CrossRefGoogle Scholar
  70. Szabo C et al (2002) Part I: pathogenetic role of peroxynitrite in the development of diabetes and diabetic vascular complications: studies with FP15, a novel potent peroxynitrite decomposition catalyst. Mol Med 8:571–580CrossRefGoogle Scholar
  71. Szpoganicz B, Gidanian S, Kong P, Farmer P (2002) Metal binding by melanins: studies of colloidal dihydroxyindole-melanin, and its complexation by Cu (II) and Zn (II) ions. J Inorg Biochem 89:45–53CrossRefGoogle Scholar
  72. Taubitz T, Tschulakow AV, Tikhonovich M, Illing B, Fang Y, Biesemeier A, Julien-Schraermeyer S, Schraermeyer U (2018) Ultrastructural alterations in the retinal pigment epithelium and photoreceptors of a Stargardt patient and three Stargardt mouse models: indication for the central role of RPE melanin in oxidative stress. PeerJ 6:e5215. CrossRefGoogle Scholar
  73. Tiravanti G, Petruzzelli D, Passino R (1997) Pretreatment of tannery wastewaters by an ion exchange process for Cr (III) removal and recovery. Water Sci Technol 36:197–207CrossRefGoogle Scholar
  74. Vinay K, Yadav S, Handa S (2014) Zinc deficiency and Canities: an unusual manifestation. JAMA Dermatol 150:1116–1117. CrossRefGoogle Scholar
  75. Vincensi M et al (1998) Phaeomelanin versus eumelanin as a chemical indicator of ultraviolet sensitivity in fair-skinned subjects at high risk for melanoma: a pilot study. Melanoma Res 8:53–58CrossRefGoogle Scholar
  76. Wunsche J, Rosei F, Graeff CFO, Santato C (2011) Growth and morphology of eumelanin thin films - a future bioelectronic material? ECS Trans 35:75–81. CrossRefGoogle Scholar
  77. Yao S, Chen H, Zhang Q, Shi Z, Liu J, Lian Z, Feng H, du Q, Xie J, Ge W, Zhou H (2018) Pain during the acute phase of Guillain–Barré syndrome. Medicine 97:e11595CrossRefGoogle Scholar
  78. Ye Y, Wang C, Zhang X, Hu Q, Zhang Y, Liu Q, Wen D, Milligan J, Bellotti A, Huang L, Dotti G, Gu Z (2017) A melanin-mediated cancer immunotherapy patch. Sci Immunol 2.
  79. Youdim M, Riederer P (1993) Dopamine metabolism and neurotransmission in primate brain in relationship to monoamine oxidase A and B inhibition. J Neural Transm [Gen Sect] 91:181–195CrossRefGoogle Scholar
  80. Yu XH, Gu ZX, Shao R, Chen HX, Wu XJ, Xu W (2011) Study on adsorbing chromium (VI) ions in wastewater by aureobacidium pullulans secretion of melanin. In: Advanced materials research. Trans Tech Publ, pp 1378–1384Google Scholar
  81. Zecca L, Swartz H (1993) Total and paramagnetic metals in human substantia nigra and its neuromelanin. J Neural Transm [P-D Sect] 5:203–213CrossRefGoogle Scholar
  82. Zhang R, Fan Q, Yang M, Cheng K, Lu X, Zhang L, Huang W, Cheng Z (2015) Engineering melanin nanoparticles as an efficient drug–delivery system for imaging-guided chemotherapy. Adv Mater 27:5063–5069. CrossRefGoogle Scholar
  83. Zhou X, Korenaga T, Takahashi T, Moriwake T, Shinoda S (1993) A process monitoring/controlling system for the treatment of wastewater containing chromium(VI). Water Res 27:1049–1054CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, College of ScienceCleveland State UniversityClevelandUSA
  2. 2.Department of Science and Mathematics, Faculty of Petroleum and Mining EngineeringSuez UniversitySuezEgypt
  3. 3.Department of Chemistry, Faculty of Science and ArtsNajran UniversityNajranSaudi Arabia
  4. 4.Department of Chemistry, Faculty of ScienceSuez Canal UniversityIsmailiaEgypt
  5. 5.Department of Chemistry and BiochemistryUniversity of Mount UnionAllianceUSA

Personalised recommendations