Environmental Science and Pollution Research

, Volume 26, Issue 18, pp 18379–18391 | Cite as

Occurrence of persistent organic pollutants in air at different sites in the province of Córdoba, Argentina

  • Cesar N. PegoraroEmail author
  • Eduardo D. Wannaz
Research Article


The occurrence of persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) in the atmosphere of six sites with different emission sources in the province of Córdoba, Argentina, was analyzed. The sites included urban, industrial, agricultural, and mountain areas. Samples were collected using passive air samplers (PAS) consisting of polyurethane foam disks (PUF). Samples were analyzed for 12 PAHs, 31 polychlorinated biphenyls (PCBs), 12 organochlorine pesticides (OCPs), and 11 polybrominated diphenyl ethers (PBDEs). The concentrations of PAHs in the atmosphere were elevated at urban sites and were even higher at the industrial site. With respect to OCPs, it was observed that the concentrations of endosulfan were greater at the agricultural site (AGR) (416 ± 4 pg m−3). For hexachlorocyclohexanes (HCHs), only the alpha isomer was detected and there were minimal differences between the different sampling sites (5.9–13.3 pg m−3). In the case of dieldrin, the highest concentrations (33.6 pg m−3) were found at the mountain site, which may have been due to its use for insect control. Although heptachlor epoxide was not detected, the concentration of heptachlor was significantly higher at the agricultural and downtown sites (∼ 3.6 pg m−3). Regarding DDTs, the isomers p,p′-DDT and p,p′-DDE showed the highest concentrations at the mountain site (ΣDDT 120 ± 12 pg m−3) and downtown site (ΣDDT 157 ± 62 pg m−3). The relationship between the isomers suggested that at the downtown site, the contribution of this pesticide to the environment was recent, probably for the control of diseases vectors. The congener pattern of PBDEs was dominated by BDE-47, and BDE-99 at all sites, with the downtown site having the highest concentrations of compound esters (ΣPBDEs 118 ± 38 pg m−3). Finally, high concentrations of PCBs were found at the industrial site (ΣPCBs 1677 ± 134 pg m−3), and the predominating homologs were 5-Cl and 6-Cl, in contrast to the other sites where PCBs were dominated by 3-Cl and 4-Cl. This is the first study of POPs carried out in the province of Córdoba.


Atmosphere Passive sampling Persistent organic pollutants PAHs Urban, industrial, agricultural, and mountain environments Cordoba, Argentina 



This work received partial support from Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), the Agencia Nacional de Promoción Científica y Tecnológica (FONCyT, PICT 1150), and Secretaría de Ciencia y Técnica de la Universidad Nacional de Córdoba (SECyT). CNP thanks the Emerging Leaders in the Americas Program (ELAP) from the Department of Foreign Affairs and International Trade of the Canadian Government for supporting his academic visit to Canada. The authors thank the technical support from Tom Harner and Ky Su from the Hazardous Air Pollutants (HAPs) Laboratory (Environment and Climate Change Canada).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2019_5088_MOESM1_ESM.doc (101 kb)
ESM 1 (DOC 101 kb)


  1. Amarillo AC, Carreras HA (2012) The effect of airborne particles and weather conditions on pediatric respiratory infections in Cordoba, argentine. Environ Pollut 170:217–221. CrossRefGoogle Scholar
  2. Amarillo AC, Carreras H (2016) Quantifying the influence of meteorological variables on particle-bound PAHs in urban environments. Atmos Pollut Res 7:597–602. CrossRefGoogle Scholar
  3. Amarillo AC, Busso IT, Carreras H (2014) Exposure to polycyclic aromatic hydrocarbons in urban environments: health risk assessment by age groups. Environ Pollut 195:157–162. CrossRefGoogle Scholar
  4. Astoviza MJ (2014) Evaluación de la distribución de contaminantes orgánicos persistentes ( COPs ) en aire en la zona de la cuenca del Plata mediante muestreadores pasivos artificiales. Universidad Nacional de La PlataGoogle Scholar
  5. Astoviza MJ, Cappelletti N, Bilos C, Migoya MC, Colombo JC (2016a) Massive airborne Endosulfan inputs related to intensive agriculture in Argentina’s Pampa. Chemosphere 144:1459–1466. CrossRefGoogle Scholar
  6. Astoviza MJ, Cappelletti N, Bilos C, Migoya MC, Colombo JC (2016b) Airborne PCB patterns and urban scale in the southern Río de la Plata Basin, Argentina. Sci Total Environ 572:16–22. CrossRefGoogle Scholar
  7. ATSDR (2002) Toxicological profile for DDT, DDE, and DDD. Atlanta, GAGoogle Scholar
  8. Bejarano González F, Ramírez Muñoz F, Souza Casadhino J, et al (2008) El endosulfán y sus alternativas en América Latina. SantiagoGoogle Scholar
  9. Besis A, Samara C (2012) Polybrominated diphenyl ethers (PBDEs) in the indoor and outdoor environments - a review on occurrence and human exposure. Environ Pollut 169:217–229CrossRefGoogle Scholar
  10. Besis A, Voutsa D, Samara C (2016) Atmospheric occurrence and gas-particle partitioning of PBDEs at industrial, urban and suburban sites of Thessaloniki, northern Greece: implications for human health. Environ Pollut 215:113–124. CrossRefGoogle Scholar
  11. Bonefeld-Jørgensen EC (2004) The human health effect Programme in Greenland, a review. Sci Total Environ 331:215–231. CrossRefGoogle Scholar
  12. Braune BM, Outridge PM, Fisk AT, Muir DCG, Helm PA, Hobbs K, Hoekstra PF, Kuzyk ZA, Kwan M, Letcher RJ, Lockhart WL, Norstrom RJ, Stern GA, Stirling I (2005) Persistent organic pollutants and mercury in marine biota of the Canadian Arctic: an overview of spatial and temporal trends. Sci Total Environ 351–352:4–56. CrossRefGoogle Scholar
  13. Brouwer A, Ahlborg UG, Rolaf van Leeuwen FX et al (1998) Report of the who working group on the assessment of health risks for human infants from exposure to PCDDS, PCDFS and PCBS. Chemosphere 37:1627–1643. CrossRefGoogle Scholar
  14. Bustnes JO, Yoccoz NG, Bangjord G, Polder A, Skaare JU (2007) Temporal trends (1986–2004) of organochlorines and brominated flame retardants in tawny owl eggs from northern Europe. Environ Sci Technol 41:8491–8497. CrossRefGoogle Scholar
  15. Carreras H, Calderón-Segura ME, Gómez-Arroyo S et al (2013) Composition and mutagenicity of PAHs associated with urban airborne particles in Córdoba, Argentina. Environ Pollut 178:403–410. CrossRefGoogle Scholar
  16. Chen LG, Mai BX, Bi XH, Chen SJ, Wang XM, Ran Y, Luo XJ, Sheng GY, Fu JM, Zeng EY (2006) Concentration levels, compositional profiles, and gas-particle partitioning of polybrominated diphenyl ethers in the atmosphere of an urban city in South China. Environ Sci Technol 40:1190–1196. CrossRefGoogle Scholar
  17. Di Rienzo JA, Casanoves F, Balzarini MG, et al (2012) Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL
  18. Dong TTT, Lee B-K (2009) Characteristics, toxicity, and source apportionment of polycylic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea. Chemosphere 74:1245–1253. CrossRefGoogle Scholar
  19. Estellano VH, Pozo K, Harner T, Franken M, Zaballa M (2008) Altitudinal and seasonal variations of persistent organic pollutants in the Bolivian Andes mountains. Environ Sci Technol 42:2528–2534. CrossRefGoogle Scholar
  20. Estellano VH, Pozo K, Estellano VH et al (2012) Atmospheric Pollution Research Using PUF disk passive samplers to simultaneously measure air concentrations of persistent organic pollutants ( POPs ) across the Tuscany Region, Italy. Atmos Pollut Res 3:88–94. CrossRefGoogle Scholar
  21. Estellano VH, Pozo K, Silibello C, Mulder MD, Efstathiou C, Tomasino MP, Funaro F, Donadio I, Focardi S (2014) Characterization of urban pollution in two cities of the Puglia region in southern Italy using field measurements and air quality (AQ) model approach. Atmos Pollut Res 5:34–41. CrossRefGoogle Scholar
  22. García S, Bovi Mitre G, Moreno I, et al (2003) Regional workshop on pesticide poisonings and harmonization in information collection. Ministry of Health of the Argentina RepublicGoogle Scholar
  23. García MG, Lecomte KL, Pasquini AI, Formica SM, Depetris PJ (2007) Sources of dissolved REE in mountainous streams draining granitic rocks, sierras Pampeanas (Córdoba, Argentina). Geochim Cosmochim Acta 71:5355–5368. CrossRefGoogle Scholar
  24. Gevao B, Al-Omair A, Sweetman A et al (2006) Passive sampler-derived air concentrations for polybrominated diphenyl ethers and polycyclic aromatic hydrocarbons in Kuwait. Environ Toxicol Chem 25:1496–1502. CrossRefGoogle Scholar
  25. Gouin T, Harner T, Blanchard P, Mackay D (2005) Passive and active air samplers as complementary methods for investigating persistent organic pollutants in the Great Lakes Basin. Environ Sci Technol 39:9115–9122CrossRefGoogle Scholar
  26. Harner T, Shoeib M, Diamond M, Stern G, Rosenberg B (2004) Using passive air samplers to assess urban-rural trends for persistent organic pollutants. 1. Polychlorinated biphenyls and organochlorine pesticides. Environ Sci Technol 38:4474–4483. CrossRefGoogle Scholar
  27. Harner T, Su K, Genualdi S, Karpowicz J, Ahrens L, Mihele C, Schuster J, Charland JP, Narayan J (2013) Calibration and application of PUF disk passive air samplers for tracking polycyclic aromatic compounds (PACs). Atmos Environ 75:123–128. CrossRefGoogle Scholar
  28. Harner T, Mitrovic M, Ahrens L, Schuster LJ (2014) Characterisation of PUF disk passive air samplers for new priority chemicals : a review. Organohalogen Comounds 76:442–445Google Scholar
  29. Herkert NJ, Martinez A, Hornbuckle KC (2016) A model using local weather data to determine the effective sampling volume for PCB congeners collected on passive air samplers. Environ Sci Technol 50:6690–6697. CrossRefGoogle Scholar
  30. Hoh E, Hites RA (2005) Brominated flame retardants in the atmosphere of the east-Central United States. Environ Sci Technol 39:7794–7802. CrossRefGoogle Scholar
  31. Jaward FM, Farrar NJ, Harner T et al (2004) Passive Air Sampling of PCBs, PBDEs, and Organochlorine Pesticides Across Europe. Environ Sci Technol 38:34–41. CrossRefGoogle Scholar
  32. Karouna-Renier NK, Rao KR, Lanza JJ, Davis DA, Wilson PA (2007) Serum profiles of PCDDs and PCDFs, in individuals near the Escambia wood treating company superfund site in Pensacola, FL. Chemosphere 69:1312–1319. CrossRefGoogle Scholar
  33. Lauby-Secretan B, Loomis D, Grosse Y, Ghissassi FE, Bouvard V, Benbrahim-Tallaa L, Guha N, Baan R, Mattock H, Straif K (2013) Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls. Lancet Oncol 14:287–288. CrossRefGoogle Scholar
  34. Lee SC, Harner T, Pozo K, Shoeib M, Wania F, Muir DCG, Barrie LA, Jones KC (2007) Polychlorinated naphthalenes in the global atmospheric passive sampling (GAPS) study. Environ Sci Technol 41:2680–2687. CrossRefGoogle Scholar
  35. Li J, Li Q, Gioia R, Zhang Y, Zhang G, Li X, Spiro B, Bhatia RS, Jones KC (2011) PBDEs in the atmosphere over the Asian marginal seas, and the Indian and Atlantic oceans. Atmos Environ 45:6622–6628. CrossRefGoogle Scholar
  36. Ma WL, Liu LY, Jia HL, Yang M, Li YF (2018) PAHs in Chinese atmosphere part I: concentration, source and temperature dependence. Atmos Environ 173:330–337. CrossRefGoogle Scholar
  37. Mandalakis M, Stephanou EG (2002) Polychlorinated biphenyls associated with fine particles (PM25) in the urban environment of Chile: concentration levels, and sampling volatilization losses. Environ Toxicol Chem 21:2270–2275.<2270:pbawfp>;2 CrossRefGoogle Scholar
  38. Markovic MZ, Prokop S, Staebler RM, Liggio J, Harner T (2015) Evaluation of the particle infiltration efficiency of three passive samplers and the PS-1 active air sampler. Atmos Environ 112:289–293. CrossRefGoogle Scholar
  39. Meire RO, Lee SC, Targino AC, Torres JPM, Harner T (2012a) Air concentrations and transport of persistent organic pollutants (POPs) in mountains of southeast and southern Brazil. Atmos Pollut Res 3:417–425. CrossRefGoogle Scholar
  40. Meire RO, Lee SC, Yao Y, Targino AC, Torres JPM, Harner T (2012b) Seasonal and altitudinal variations of legacy and current-use pesticides in the Brazilian tropical and subtropical mountains. Atmos Environ 59:108–116. CrossRefGoogle Scholar
  41. Melymuk L, Bohlin P, Sáňka O, Pozo K, Klánová J (2014) Current challenges in air sampling of semivolatile organic contaminants: sampling artifacts and their influence on data comparability. Environ Sci Technol 48:14077–14091. CrossRefGoogle Scholar
  42. Montory M, Barra R (2006) Preliminary data on polybrominated diphenyl ethers (PBDEs) in farmed fish tissues (Salmo salar) and fish feed in southern Chile. Chemosphere 63:1252–1260. CrossRefGoogle Scholar
  43. Motelay-Massei A, Harner T, Shoeib M, Diamond M, Stern G, Rosenberg B (2005) Using passive air samplers to assess urban-rural trends for persistent organic pollutants and polycyclic aromatic hydrocarbons. 2. Seasonal trends for PAHs, PCBs, and organochlorine pesticides. Environ Sci Technol 39:5763–5773. CrossRefGoogle Scholar
  44. Murvoll KM, Skaare JU, Anderssen E, Jenssen BM (2006) Exposure and effects of persistent organic pollutants in European shag (Phalacrocorax aristotelis) hatchlings from the coast of Norway. Environ Toxicol Chem 25:190–198. CrossRefGoogle Scholar
  45. Pegoraro CN, Harner T, Su K, Chiappero MS (2016) Assessing levels of POPs in air over the South Atlantic Ocean off the coast of South America. Sci Total Environ 571:172–177. CrossRefGoogle Scholar
  46. Petrich NT, Spak SN, Carmichael GR, Hu D, Martinez A, Hornbuckle KC (2013) Simulating and explaining passive air sampling rates for semivolatile compounds on polyurethane foam passive samplers. Environ Sci Technol 47:8591–8598. Google Scholar
  47. Plísková M, Vondrácek J, Canton RF et al (2005) Impact of polychlorinated biphenyls contamination on estrogenic activity in human male serum. Environ Health Perspect 113:1277–1284. CrossRefGoogle Scholar
  48. Pozo K, Harner T, Shoeib M, Urrutia R, Barra R, Parra O, Focardi S (2004) Passive-sampler derived air concentrations of persistent organic pollutants on a north-south transect in Chile. Environ Sci Technol 38:6529–6537. CrossRefGoogle Scholar
  49. Pozo K, Harner T, Wania F, Muir DCG, Jones KC, Barrie LA (2006) Toward a global network for persistent organic pollutants in air: results from the GAPS study. Environ Sci Technol 40:4867–4873. CrossRefGoogle Scholar
  50. Pozo K, Harner T, Lee SC, Wania F, Muir DCG, Jones KC (2009) Seasonally resolved concentrations of persistent organic pollutants in the global atmosphere from the first year of the GAPS study. Environ Sci Technol 43:796–803. CrossRefGoogle Scholar
  51. Pozo K, Harner T, Rudolph A, Oyola G, Estellano VH, Ahumada-Rudolph R, Garrido M, Pozo K, Mabilia R, Focardi S (2012) Survey of persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) in the atmosphere of rural, urban and industrial areas of Concepción, Chile, using passive air samplers. Atmos Pollut Res 3:426–434. CrossRefGoogle Scholar
  52. Pozo K, Estellano VH, Harner T, Diaz-Robles L, Cereceda-Balic F, Etcharren P, Pozo K, Vidal V, Guerrero F, Vergara-Fernández A (2015) Assessing polycyclic aromatic hydrocarbons (PAHs) using passive air sampling in the atmosphere of one of the most wood-smoke-polluted cities in Chile: the case study of Temuco. Chemosphere 134:475–481. CrossRefGoogle Scholar
  53. Pozo K, Oyola G, Estellano VH, Harner T, Rudolph A, Prybilova P, Kukucka P, Audi O, Klánová J, Metzdorff A, Focardi S (2017) Persistent organic pollutants (POPs) in the atmosphere of three Chilean cities using passive air samplers. Sci Total Environ 586:107–114. CrossRefGoogle Scholar
  54. Qiu X, Zhu T, Yao B, Hu J, Hu S (2005) Contribution of dicofol to the current DDT pollution in China. Environ Sci Technol 39:4385–4390. CrossRefGoogle Scholar
  55. Qu C, Doherty AL, Xing X, et al (2018) Polyurethane foam-based passive air samplers in monitoring persistent organic pollutants: theory and application. In: Environmental geochemistry: site characterization, Data Analysis and Case Histories: Second Edition. Elsevier, pp 521–542Google Scholar
  56. Rauert C, Harner T, Schuster JK, Quinto K, Fillmann G, Castillo LE, Fentanes O, Ibarra MV, Miglioranza KSB, Rivadeneira IM, Pozo K, Puerta AP, Zuluaga BHA (2016) Towards a regional passive air sampling network and strategy for new POPs in the GRULAC region: perspectives from the GAPS network and first results for organophosphorus flame retardants. Sci Total Environ 573:1294–1302. CrossRefGoogle Scholar
  57. Rauert C, Harner T, Schuster JK, Eng A, Fillmann G, Castillo LE, Fentanes O, Ibarra MV, Miglioranza KSB, Rivadeneira IM, Pozo K, Aristizábal Zuluaga BH (2018a) Air monitoring of new and legacy POPs in the Group of Latin America and Caribbean (GRULAC) region. Environ Pollut 243:1252–1262. CrossRefGoogle Scholar
  58. Rauert C, Harner T, Schuster JK, Eng A, Fillmann G, Castillo LE, Fentanes O, Villa Ibarra M, Miglioranza KSB, Moreno Rivadeneira I, Pozo K, Aristizábal Zuluaga BH (2018b) Atmospheric concentrations of new persistent organic pollutants and emerging Chemicals of Concern in the Group of Latin America and Caribbean (GRULAC) region. Environ Sci Technol 52:7240–7249. CrossRefGoogle Scholar
  59. Rigét F, Vorkamp K, Dietz R, Rastogi SC (2006) Temporal trend studies on polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in ringed seals from East Greenland. J Environ Monit 8:1000–1005. CrossRefGoogle Scholar
  60. Roscales JL, Muñoz-Arnanz J, Ros M, Vicente A, Barrios L, Jiménez B (2018) Assessment of POPs in air from Spain using passive sampling from 2008 to 2015. Part I: spatial and temporal observations of PBDEs. Sci Total Environ 634:1657–1668. CrossRefGoogle Scholar
  61. Safe S (1990) Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). Crit Rev Toxicol 21:51–88CrossRefGoogle Scholar
  62. Safe SH (1994) Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit Rev Toxicol 24:87–149. CrossRefGoogle Scholar
  63. SAyDS (2002) Minimum Standards for the Management and Disposal of PCBs In: Law Text 25670.
  64. Schuster JK, Harner T, Su K, Mihele C, Eng A (2015) First results from the Oil Sands passive air monitoring network for polycyclic aromatic compounds. Environ Sci Technol 49:2991–2998. CrossRefGoogle Scholar
  65. SENASA (2011) Resolution 511/2011, Prohibiting Imports of the Active Ingredient Endosulfan and Its Formulated ProductsGoogle Scholar
  66. Shoeib M, Harner T (2002) Characterization and comparison of three passive air samplers for persistent organic pollutants. Environ Sci Technol 36:4142–4151CrossRefGoogle Scholar
  67. Shunthirasingham C, Barra R, Mendoza G, Montory M, Oyiliagu CE, Lei YD, Wania F (2011) Spatial variability of atmospheric semivolatile organic compounds in Chile. Atmos Environ 45:303–309. CrossRefGoogle Scholar
  68. Silva-Barni MF, Gonzalez M, Wania F, Lei YD, Miglioranza KSB (2018) Spatial and temporal distribution of pesticides and PCBs in the atmosphere using XAD-resin based passive samplers: a case study in the Quequén Grande River watershed, Argentina. Atmos Pollut Res 9:238–245. CrossRefGoogle Scholar
  69. Stevenson DE, Walborg EF, North DW et al (1999) Monograph: reassessment of human cancer risk of aldrin/dieldrin. Toxicol Lett 109:123–186CrossRefGoogle Scholar
  70. Stockholm Convention (2015) Stockholm Convention on Persistent Organic Pollutants (POPs). Accessed 20 Aug 2006
  71. Tiido T, Rignell-Hydbom A, Jönsson B, Giwercman YL, Rylander L, Hagmar L, Giwercman A (2005) Exposure to persistent organochlorine pollutants associates with human sperm Y:X chromosome ratio. Hum Reprod 20:1903–1909. CrossRefGoogle Scholar
  72. Tombesi N, Pozo K, Harner T (2014) Persistent organic pollutants (POPs) in the atmosphere of agricultural and urban areas in the province of Buenos Aires in Argentina using PUF disk passive air samplers. Atmos Pollut Res 5:170–178. CrossRefGoogle Scholar
  73. UNEP (2006) Stockholm Convention on persistent organic pollutants persistent organic pollutants. Review Committee Second meeting. GenevaGoogle Scholar
  74. UNEP (2012) Report of the expert group on the assessment of the production and use of DDT and its alternatives for disease vector control. Geneva, SwitzerlandGoogle Scholar
  75. Van den Berg M, Birnbaum LS, Denison M et al (2006) The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 93:223–241CrossRefGoogle Scholar
  76. Vives I, Canuti E, Castro-Jiménez J, Christoph EH, Eisenreich SJ, Hanke G, Huber T, Mariani G, Mueller A, Skejo H, Umlauf G, Wollgast J (2007) Occurrence of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/fs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in Lake Maggiore (Italy and Switzerland). J Environ Monit 9:589–598. CrossRefGoogle Scholar
  77. Wannaz ED, Abril G, Rodriguez JH, Pignata ML (2013) Assessment of polycyclic aromatic hydrocarbons in industrial and urban areas using passive air samplers and leaves of Tillandsia capillaris. J Environ Chem Eng 1:1028–1035. CrossRefGoogle Scholar
  78. Weber J, Halsall C, Muir D et al (2010) Endosulfan, a global pesticide: a review of its fate in the environment and occurrence in the Arctic. Sci Total Environ 408:2966–2984CrossRefGoogle Scholar
  79. Wong F, Alegria HA, Bidleman TF, Alvarado V́, Angeles F, Galarza AÁ, Bandala ER, Hinojosa IC, Estrada IG, Reyes GG, Gold-Bouchot G, Zamora J́VḾ, Murguía-González J́, Espinoza ER (2009) Passive air sampling of organochlorine pesticides in Mexico. Environ Sci Technol 43:704–710. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Química, Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del Plata, CONICETMar del PlataArgentina
  2. 2.Instituto Multidisciplinario de Biología Vegetal (IMBIV)CONICET - Universidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations