Environmental Science and Pollution Research

, Volume 26, Issue 18, pp 18509–18519 | Cite as

Efficient biodegradation of polyethylene (HDPE) waste by the plastic-eating lesser waxworm (Achroia grisella)

  • Harsha Kundungal
  • Manjari Gangarapu
  • Saran Sarangapani
  • Arunkumar Patchaiyappan
  • Suja Purushothaman DevipriyaEmail author
Research Article


Polyethylene (PE) is one of the major persistent plastic that is not biodegradable at considerable rates in most environments, and is the major source of unceasing environmental pollution. Recently, biodegradation of plastic wastes through waxworms and mealworms were reported. The present study focuses on the high-density polyethylene (HDPE) degradation capabilities of the larvae of Achroia grisella (lesser waxworm) and its ability to complete its life cycle when fed with HDPE. Effects of added nutrition on PE degradation were assessed, providing wax comb as co-feed (PE-WC). The egested frass of the waxworm fed on waxcomb (WC), PE, and PE-WC were studied by analyzing the changes in physiochemical properties through FTIR and 1H NMR techniques in addition to weight loss percentage of PE and survival rates of the tested lesser waxworms. The post-degradation studies of WC and PE showed 90.5 ± 1.2% and 43.3 ± 1.6% weight loss, respectively, by a group of 100 lesser waxworms. Over an 8-day period, PE consumption increased with an ingestion of 1.83 mg of PE per day per larvae. Supplementing the PE feed of lesser waxworms with WC facilitated enhanced PE degradation showing 69.6 ± 3.2% weight loss. Twenty-eight day survival rates for lesser waxworms fed on WC, PE, and PE-WC were 91.3 ± 1.01%, 74.6 ± 2.9%, and 86 ± 1.4%, respectively. The FTIR and 1H NMR analysis of egested frass indicated formation of new functional organic groups, supporting biodegradation of PE in lesser waxworms. The frass of the lesser waxworm fed on PE samples shows the presence of new carbonyl and alcoholic groups with increase in unsaturated hydrocarbon indicating formation of biodegraded intermediates. Lesser waxworms fed with WC, PE, and PE-WC completed all life cycle stages (larvae, pupae, moth, and egg) developing into a second generation. The second generation of PE-WC fed larvae of A. grisella efficiently degrades PE at par with first generation counterparts.


Plastic wastes Polyethylene Biodegradation Waxworm Achroia grisella 



The authors are thankful to the Central Instrumentation Facility, Pondicherry University, India, for providing the instrumentation facility for characterization. The financial support from Maulana Azad National Fellowship program, University Grants Commission, India (F1-17.1/2015-16/MANF-2015-17-KER-65616) is acknowledged.

Supplementary material

11356_2019_5038_MOESM1_ESM.docx (2.5 mb)
ESM 1 (DOCX 2555 kb)


  1. Abraham J, Ghosh E, Mukherjee P, Gajendiran A (2017) Microbial degradation of low density polyethylene. Environ Prog Sustain Energy 36:147–154CrossRefGoogle Scholar
  2. Albertsson AC, Andersson SO, Karlsson S (1987) The mechanism of biodegradation of polyethylene. Polym Degrad Stab 18:73–87CrossRefGoogle Scholar
  3. Ali SS, Qazi IA, Arshad M, Khan Z, Voice TC, Mehmood CT (2016) Photocatalytic degradation of low density polyethylene (LDPE) films using titania nanotubes. Environ Nanotechnol Monit Manage 5:44–53CrossRefGoogle Scholar
  4. Andrady AL, Pegram JE, Tropsha Y (1993) Changes in carbonyl index and average molecular weight on embrittlement of enhanced-photodegradable polyethylenes. J Polym Environ 1:171–179CrossRefGoogle Scholar
  5. Asgari P, Moradi O, Tajeddin B (2014) The effect of nanocomposite packaging carbon nanotube base on organoleptic and fungal growth of Mazafati brand dates. Int Nano Lett 4:98CrossRefGoogle Scholar
  6. Barnes DK, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond B Biol Sci 364:1985–1998CrossRefGoogle Scholar
  7. Bombelli P, Howe CJ, Bertocchini F (2017) Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr Biol 27:R292–R293CrossRefGoogle Scholar
  8. Bonhomme S, Cuer A, Delort AM, Lemaire J, Sancelme M, Scott G (2003) Environmental biodegradation of polyethylene. Polym Degrad Stab 81:441–452CrossRefGoogle Scholar
  9. Brandon AM, Gao SH, Tian R, Ning D, Yang S, Zhou J, Wu WM, Criddle CS (2018) Biodegradation of polyethylene and plastic mixtures in mealworms (larvae of Tenebrio molitor) and effects on the gut microbiome. Environ Sci Technol 52:6526–6533CrossRefGoogle Scholar
  10. Briassoulis D (2006) Mechanical behaviour of biodegradable agricultural films under real field conditions. Polym Degrad Stab 91:1256–1272CrossRefGoogle Scholar
  11. Briassoulis D, Aristopoulou A, Bonora M, Verlodt I (2004) Degradation characterisation of agricultural low-density polyethylene films. Biosyst Eng 88:131–143CrossRefGoogle Scholar
  12. Bugada DC, Rudin A (1987) Branching in low density polyethylene by 13C-NMR. Eur Polym J 23:809–818CrossRefGoogle Scholar
  13. Chandel YS, Sharma S, Verma KS (2003) Comparative biology of the greater waxmoth, Galleria mellonella L., and lesser waxmoth, Achoria grisella. F Pest Manage Econ Zool 11:69–74Google Scholar
  14. Cózar A, Echevarría F, González-Gordillo JI, Irigoien X, Úbeda B, Hernández-León S, Fernández-de-Puelles ML (2014) Plastic debris in the open ocean. Proc Natl Acad Sci 111:10239–10244CrossRefGoogle Scholar
  15. Das MP, Kumar S (2015) An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3 Biotech 5:81–86CrossRefGoogle Scholar
  16. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM (2008) Phylogeny. fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:465–469CrossRefGoogle Scholar
  17. Dunshea G, Barros NB, Wells RS, Gales NJ, Hindell MA, Jarman SN (2008) Pseudogenes and DNA-based diet analyses: a cautionary tale from a relatively well sampled predator-prey system. Bull Entomol Res 98:239–248CrossRefGoogle Scholar
  18. Ellis JD, Graham JR, Mortensen A (2013) Standard methods for wax moth research. J Apic Res 52:1–17CrossRefGoogle Scholar
  19. Eyheraguibel B, Traikia M, Fontanella S, Sancelme M, Bonhomme S, Fromageot D, Lemaire J, Lauranson G, Lacoste J, Delort AM (2017) Characterization of oxidized oligomers from polyethylene films by mass spectrometry and NMR spectroscopy before and after biodegradation by a Rhodococcus rhodochrous strain. Chemosphere 184:366–374CrossRefGoogle Scholar
  20. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782CrossRefGoogle Scholar
  21. Guillot J, Deville M, Berthelemy M, Provost F, Guého E (2000) A single PCR-restriction endonuclease analysis for rapid identification of Malassezia species. Lett Appl Microbiol 31:400–403CrossRefGoogle Scholar
  22. Gulmine JV, Janissek PR, Heise HM, Akcelrud L (2002) Polyethylene characterization by FTIR. Polym Test 21:557–563CrossRefGoogle Scholar
  23. Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98:1093–1100CrossRefGoogle Scholar
  24. Harshvardhan K, Jha B (2013) Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Mar Pollut Bull 77:100–106CrossRefGoogle Scholar
  25. Ibiene AA, Stanley HO, Immanuel OM (2013) Biodegradation of polyethylene by Bacillus sp. indigenous to the Niger delta mangrove swamp. Nigerian J Biotechnol 26:68–78Google Scholar
  26. Ingavale RR, Raut PD (2018) Comparative biodegradation studies of LDPE and HDPE using Bacillus weihenstephanensis isolated from garbage soil. Nat Environ Pollut Technol 17:649–655Google Scholar
  27. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347:768–771CrossRefGoogle Scholar
  28. Karlsson S, Ljungquist O, Albertsson AC (1988) Biodegradation of polyethylene and the influence of surfactants. Polym Degrad Stab 21:237–250CrossRefGoogle Scholar
  29. Kathiresan K (2003) Polythene and plastics-degrading microbes from the mangrove soil. Rev Biol Trop 51:629–633Google Scholar
  30. Khabbaz F, Albertsson AC, Karlsson S (1999) Chemical and morphological changes of environmentally degradable polyethylene films exposed to thermo-oxidation. Polym Degrad Stab 63:127–138CrossRefGoogle Scholar
  31. Kumar S, Hatha AAM, Christi KS (2007) Diversity and effectiveness of tropical mangrove soil microflora on the degradation of polythene carry bags. Rev Biol Trop 55:777–786CrossRefGoogle Scholar
  32. Kutyshenko VP, Beskaravayny P, Uversky VN (2015) “In-plant” NMR: analysis of the intact plant Vesicularia dubyana by high resolution NMR spectroscopy. Molecules 20:4359–4368CrossRefGoogle Scholar
  33. Kyaw BM, Champakalakshmi R, Sakharkar MK, Lim CS, Sakharkar KR (2012) Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian J Microbiol 52:411–419CrossRefGoogle Scholar
  34. Law KL, Morét-Ferguson S, Maximenko NA, Proskurowski G, Peacock EE, Hafner J, Reddy CM (2010) Plastic accumulation in the North Atlantic subtropical gyre. Science 329:1185–1188CrossRefGoogle Scholar
  35. Lee B, Pometto AL, Fratzke A, Bailey TB (1991) Biodegradation of degradable plastic polyethylene by Phanerochaete and Streptomyces species. Appl Environ Microbiol 57:678–685Google Scholar
  36. Mahgoub MO, Lau WH, Omar DB (2015) Observations on the biology and larval instars discrimination of wax moth Achroia grisella F. (Pyralidae: Lepidoptera). J Entomol 12:1–11CrossRefGoogle Scholar
  37. Mamoor GM, Qamar N, Farooq M (2011) Free radical graft modification of polyethylene with methacrylic acid and styrene monomer. Chem Eng Res Bull 15:34–38Google Scholar
  38. Mehmood CT, Qazi IA, Hashmi I, Bhargava S, Deepa S (2016) Biodegradation of low density polyethylene (LDPE) modified with dye sensitized titania and starch blend using Stenotrophomonas pavanii. Int Biodeterior Biodegrad 113:276–286CrossRefGoogle Scholar
  39. Mohammadi D, Abad RFP, Rashidi MR, Mohammadi SA (2010) Study of cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) using Dyar’s rule. Munis Entomol Zool 5:216–224Google Scholar
  40. Muhonja CN, Makonde H, Magoma G, Imbuga M (2018) Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PLoS One 13:e0198446CrossRefGoogle Scholar
  41. Mukherjee S, RoyChaudhuri U, Kundu PP (2018) Biodegradation of polyethylene via complete solubilization by the action of Pseudomonas fluorescens, biosurfactant produced by Bacillus licheniformis and anionic surfactant. J Chem Technol Biotechnol 93:1300–1311CrossRefGoogle Scholar
  42. Nakao M, Waki T, Sasaki M, Anders JL, Koga D, Asakawa M (2017) Brachylaima ezohelicis sp. nov.(Trematoda: Brachylaimidae) found from the land snail Ezohelix gainesi, with a note of an unidentified Brachylaima species in Hokkaido, Japan. Parasitol Int 66:240–249CrossRefGoogle Scholar
  43. Nanda S, Sahu S, Abraham J (2010) Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. J Appl Sci Environ Manag 14.
  44. Novotný Č, Malachová K, Adamus G, Kwiecień M, Lotti N, Soccio M, Fava F (2018) Deterioration of irradiation/high-temperature pretreated, linear low-density polyethylene (LLDPE) by Bacillus amyloliquefaciens. Int Biodeterior Biodegrad 132:259–267CrossRefGoogle Scholar
  45. Paço A, Duarte K, da Costa JP, Santos PS, Pereira R, Pereira ME, Freitas AC, Duarte AC, Rocha-Santos TA (2017) Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Sci Total Environ 586:10–15CrossRefGoogle Scholar
  46. Pramila R, Ramesh KV (2015) Potential biodegradation of low density polyethylene (LDPE) by Acinetobacter baumannii. Afr J Bacteriol Res 7:24–28Google Scholar
  47. Restrepo-Flórez JM, Bassi A, Thompson MR (2014) Microbial degradation and deterioration of polyethylene—a review. Int Biodeterior Biodegrad 88:83–90CrossRefGoogle Scholar
  48. Robertson HE, Lapraz F, Egger B, Telford MJ, Schiffer PH (2017) The mitochondrial genomes of the acoelomorph worms Paratomella rubra, Isodiametra pulchra and Archaphanostoma ylvae. Sci Rep 7:1847CrossRefGoogle Scholar
  49. Rochman CM, Browne MA, Halpern BS, Hentschel BT, Hoh E, Karapanagioti HK, Rios-Mendoza LM, TaKada H, The S, Thompson RC (2013) Policy: classify plastic waste as hazardous. Nature 494:169–171CrossRefGoogle Scholar
  50. Sak O (2018) Effects of 5-aza-2′-deoxycytidine on biological parameters of Achroia grisella F. (Lepidoptera: Pyralidae). Arch Biol Sci 70:149–158CrossRefGoogle Scholar
  51. Shearer GL (1989) An evaluation of Fourier transform infrared spectroscopy for the characterization of organic compounds in art and archaeology (Doctoral dissertation, University of London)Google Scholar
  52. Silva GGD, Sobral PJA, Carvalho RA, Bergo PVA, Mendieta-Taboada O, Habitante AMQB (2008) Biodegradable films based on blends of gelatin and poly (vinyl alcohol): effect of PVA type or concentration on some physical properties of films. J Polym Environ 16:276–285CrossRefGoogle Scholar
  53. Sivan A, Szanto M, Pavlov V (2006) Biofilm development of the polyethylene degrading bacterium Rhodococcus ruber. Appl Microbiol Biotechnol 72:346–352CrossRefGoogle Scholar
  54. Sudhakar M, Doble M, Murthy PS, Venkatesan R (2008) Marine microbe-mediated biodegradation of low-and high-density polyethylenes. Int Biodeterior Biodegrad 61:203–213CrossRefGoogle Scholar
  55. Volke-Sepúlveda T, Saucedo-Castañeda G, Gutiérrez-Rojas M, Manzur A, Favela-Torres E (2002) Thermally treated low density polyethylene biodegradation by Penicillium pinophilum and Aspergillus niger. J Appl Polym Sci 83:305–314CrossRefGoogle Scholar
  56. Wagner M, Scherer C, Alvarez-Muñoz D, Brennholt N, Bourrain X, Buchinger S, Rodriguez-Mozaz S (2014) Microplastics in freshwater ecosystems: what we know and what we need to know. Environ Sci Eur 26:12CrossRefGoogle Scholar
  57. Worm B, Lotze HK, Jubinville I, Wilcox C, Jambeck J (2017) Plastic as a persistent marine pollutant. Annu Rev Environ Resour 42:1–26CrossRefGoogle Scholar
  58. Xu J, Yang W, Zhang C, Dong X, Luo Y (2018) Photo-oxidation and biodegradation of polyethylene films containing polyethylene glycol modified TiO2 as pro-oxidant additives. Polym Compos 39:E531–E539CrossRefGoogle Scholar
  59. Yamada-Onodera K, Mukumoto H, Katsuyaya Y, Saiganji A, Tani Y (2001) Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polym Degrad Stab 72:323–327CrossRefGoogle Scholar
  60. Yang CZ, Yaniger SI, Jordan VC, Klein DJ, Bittner GD (2011) Most plastic products release estrogenic chemicals: a potential health problem that can be solved. Environ Health Perspect 119:989–996CrossRefGoogle Scholar
  61. Yang J, Yang Y, Wu WM, Zhao J, Jiang L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48:13776–13784CrossRefGoogle Scholar
  62. Yang Y, Yang J, Wu WM, Zhao J, Song Y, Gao L, Yang R, Jiang L (2015a) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 1. Chemical and physical characterization and isotopic tests. Environ Sci Technol 49:12080–12086CrossRefGoogle Scholar
  63. Yang Y, Yang J, Wu WM, Zhao J, Song Y, Gao L, Yang R, Jiang L (2015b) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms. Environ Sci Technol 49:12087–12093CrossRefGoogle Scholar
  64. Yang SS, Brandon AM, Flanagan JCA, Yang J, Ning D, Cai SY, Fan HQ, Wang ZY, Ren J, Benbow E, Ren NQ (2018) Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere 191:979–989CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Harsha Kundungal
    • 1
  • Manjari Gangarapu
    • 1
  • Saran Sarangapani
    • 1
  • Arunkumar Patchaiyappan
    • 1
  • Suja Purushothaman Devipriya
    • 1
    Email author
  1. 1.Department of Ecology and Environmental SciencesPondicherry UniversityPuducherryIndia

Personalised recommendations