Environmental Science and Pollution Research

, Volume 26, Issue 19, pp 19327–19334 | Cite as

Depollution of mining effluents: innovative mobilization of plant resources

  • Andrii Stanovych
  • Muriel Balloy
  • Tomasz K. Olszewski
  • Eddy Petit
  • Claude GrisonEmail author
Research Article


Based on the ability of some specific aquatic plants to concentrate metals in their roots, we propose an innovative biosorption system to clean up mining effluents. The system we propose represents an interesting solution to an important environmental problem, the decontamination of metal-polluted water and prevention of dispersal of metals into the environment. The solution presented is a form of ecological recycling of Zn, an essential primary metal in many industrial applications. Finally, the methodology developed is a sustainable way of managing the biomass from eradication or control of invasive plants.


Aquatic pollution Metal-contaminated mining effluents Water management Biosorption Plant-based filter system Sustainable and eco-friendly processes 


Funding information

The authors gratefully acknowledge financial support from the Centre National de la Recherche Scientifique (CNRS), FEDER- UNION EUROPEENNE- Région Occitanie, Klorane Botanical Foundation (KBF), Suez Foundation, Compagnie Nationale du Rhône (CNR), and Alain Canales (Syndicat Mixte Ganges le Vigan) for the crops of Fallopia japonica.


  1. Cisneros J, Oki T, Arnell NW, Benito G, Cogley JG, Döll P, Jiang T, Mwakalila SS (2014) Freshwater resources. In: Climate change 2014: impacts, adaptation and vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Chapter 3 (Freshwater Resources), 229–269Google Scholar
  2. Clavé G, Pelissier F, Campadelli S, Grison C (2017) Ecocatalyzed Suzuki-Miyaura cross coupling of heteroaryl compounds. Green Chem 19:4093–4103CrossRefGoogle Scholar
  3. Crimmins A, Balbus J, Gamble JL, Beard CB, Bell JE, Dodgen D, Eisen RJ. Fann N, Hawkins MD, Herring SC, Jantarasami L, Mills DM, Saha S, Sarofim MC, Trtanj J, Ziska L (2016) The impacts of climate change on human health in the United States: a scientific assessment. , Eds. U.S. Global Change Research Program, Washington, DC, 312Google Scholar
  4. Decision No 2455/2001/EC of the European Parliament and of the Council of 20 November 2001 establishing the list of priority substances in the field of water policy and amending Directive 2000/60/EC Official Journal L 331, 2001, 0001–0005Google Scholar
  5. Deyris PA, Grison C (2018) Nature, ecology and chemistry: an unusual combination for a new green catalysis, ecocatalysis. Curr Opin Green Sustain Chem 10:6–10CrossRefGoogle Scholar
  6. Deyris PA, Petit E, Legrand YM, Diliberto S, Boulanger C, Bert V, Grison C (2018) Biosourced polymetallic catalysis: a surprising and efficient means to promote the Knoevenagel condensation. Front Chem 6:48. CrossRefGoogle Scholar
  7. Escande V, Garoux L, Grison CM, Thillier Y, Debart F, Vasseur JJ, Boulanger C, Grison C (2013) Ecological catalysis and phytoextraction: symbiosis for future. Appl Catal B 146:1–298Google Scholar
  8. Escande V, Petit E, Olszewski T, Grison C (2014a) Zn biosourced catalysts: an efficient way for the synthesis of under-exploited platform molecules from carbohydrates. ChemSusChem 7(7):1915–1923CrossRefGoogle Scholar
  9. Escande V, Olszewski T, Grison C (2014b) Preparation of ecological catalysts derived from Zn hyperaccumulating plants and their catalytic activity in Diels-Alder reaction. Comptes-Rendus de l’Académie des Sciences, article sur invitation 17:731–737Google Scholar
  10. Escande V, Olszewski T, Grison C (2015a) From biodiversity to catalytic diversity: how to control the reaction mechanism by the nature of metallophytes. Environ Sci Pollut Res 22:5653–5666CrossRefGoogle Scholar
  11. Escande V, Velati A, Grison C (2015b) Ecocatalysis for 2H-chromenes synthesis: an integrated approach for phytomanagement of polluted ecosystems. Environ Sci Pollut Res 22:5677–5685CrossRefGoogle Scholar
  12. Escande V, Velati A, Garel C, Renard BL, Petit E, Grison C, Phytoextracted mining wastes for Ecocatalysis (2015c) Eco-Mn®, an efficient and eco-friendly plant-based catalyst for reductive amination of ketones. Green Chem 17:2188–2199CrossRefGoogle Scholar
  13. Escande V, Petit E, Garoux L, Boulanger C, Grison C (2015d) Switchable alkene epoxidation/oxidative cleavage with H2O2-NaHCO3: efficient heterogeneous catalysis derived from biosourced eco-Mn. ACS Sustain Chem Eng 3(11):2704–2715CrossRefGoogle Scholar
  14. Escande V, Poullain C, Clavé G, Petit E, Masquelez N, Hesemann P, Grison C (2017) Alternative green and ecological input for transfer hydrogenation using EcoNi(0) catalyst in isopropanol. Applied Catalysis B. 210:495–503CrossRefGoogle Scholar
  15. Ezbakhe F (2018) Addressing Water Pollution as a means to achieving the sustainable development goals. J Water Pollut Control 2018 1(1):6Google Scholar
  16. Grison C (2015) Combining phytoextraction and ecocatalysis: an environmental, ecological, ethic and economic opportunity. Environ Sci Pollut Res 22:5589–5698CrossRefGoogle Scholar
  17. Grison CM, Mazel M, Sellini A, Escande V, Biton J, Grison C (2015a) The leguminous species Anthyllis vulneraria as a Zn-hyperaccumulator and eco-Zn catalyst resources. Environ Sci Pollut Res 22:5667–5676CrossRefGoogle Scholar
  18. Grison CM, Escande V, Velati A, Grison C (2015b) Metallophytes for organic synthesis: towards new greener selective protection / deprotection procedures. Environ Sci Pollut Res 22:5686–5698CrossRefGoogle Scholar
  19. Kumar K, Yadava K, Guptaa N, Kumarb A, Reecec LM, Singhd N, Rezaniae S, Khanf SA (2018) Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecol Eng 120:274–298CrossRefGoogle Scholar
  20. Lambert E, Dutartre A, Coudreuse J, Haury J (2010) Relationships between the biomass production of invasive Ludwigia species and physical properties of habitats in France. Hydrobiologia 656:173–186CrossRefGoogle Scholar
  21. Losfeld G, De Vidal L, Blache P, Escande V, L’huillier L, Grison C (2012a) Design and performance of green supported Lewis acid catalysts derived from biomass for Friedel-crafts alkylation and acylation. Catal Today 189(Iss 1):111–116CrossRefGoogle Scholar
  22. Losfeld G, Vidal De La Blache P, Escande V, Grison C (2012b) Zinc hyperaccumulating plants as renewable resources for the chlorination of alcohols, Green. Chem Lett Rev:1–6Google Scholar
  23. Luoma SN, Rainbow PS (2008) Metal contamination in aquatic environments: science and lateral management. Cambridge University Press, S. N.Luoma; P.S. RainbowGoogle Scholar
  24. Merdy P, Guillon E, Frapart YM, Aplincourt M (2003) Iron and manganese surface complex formation with extracted lignin. New J Chem 27:577–582CrossRefGoogle Scholar
  25. NOR: ATEP9870017A - consolidated version of 14 February 2019,
  26. Passariello B, Giuliano V, Quaresima S, Barbaro M, Caroli S, Forte G, Carelli G, Iavicoli I (2002) Evaluation of the environmental contamination at an abandoned mining site. Microchem J 73(1–2):245–250CrossRefGoogle Scholar
  27. Pitron G (2018) The war of rare metals: the hidden side of the green energy and digital transition, Ed. LLIGoogle Scholar
  28. Saunier JB, Losfeld G, Freydier R, Grison C (2013) Trace elements biomonitoring in a historical mining district (les Malines, France). Chemosphere 93(9):2016–2023CrossRefGoogle Scholar
  29. Thillier Y, Losfeld G, Escande V, Dupouy C, Vasseur J-J, Debart F, Grison C (2013) Solid-phase synthesis of 5′-capped RNA with polymetallic catalysts prepared from metallophytes species. RCS Advances 3(15):5204–5212Google Scholar
  30. Vila M, Basnou C, Gollasch S, Josefsonn M (2009) One hundred of the most invasive alien species in Europe. In DAISIE handbook of alien species in Europe, 3, 269–374. Dordrecht: Springer Netherlands.
  31. Yfantis N, Yfantis A, Giannakakis G, Gaze V (2018) Evaluation of a pilot plant for a secondary treatment of mining effluents. Desalin Water Treat 127:184–196. CrossRefGoogle Scholar
  32. Zuryak R, Sukkariyah B, Baalbaki R, Ghanem DA (2002) Ni phytoaccumulation in Mentha aquatica L. and Mentha sylvestris L. Water Air Soil Pollut 139:355–364CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Bio-inspired Chemistry and Ecological InnovationsUMR 5021 CNRS - University of MontpellierMontpellierFrance
  2. 2.Faculty of ChemistryWrocław University of Science and TechnologyWrocławPoland
  3. 3.Institut Européen des Membranes, CNRS - University of MontpellierEcole Nationale Supérieure de Chimie de MontpellierMontpellierFrance

Personalised recommendations