Sensitivity to cadmium of the endangered freshwater pearl mussel Margaritifera margaritifera from the Dronne River (France): experimental exposure

  • Magalie BaudrimontEmail author
  • Patrice Gonzalez
  • Nathalie Mesmer-Dudons
  • Alexia Legeay
Multi-Stressors in Freshwater and Transitional Environments: from Legacy Pollutants to Emerging Ones


Margaritifera margaritifera is a critically endangered species in Europe. Among the causes explaining its decline, metal pollution had never been deeply studied. Thus, an ecotoxicological investigation was developed on this species which comes from the Dronne River (South-West of France). Cadmium (Cd) exposure of mussels at 2 and 5 μg/L for 7 days was conducted to test their vulnerability to this metal, and also the potential endocrine disruption power of Cd. Morphometric analyses, gonad histological observations, metal bioaccumulation, metallothionein (MTs) production, measures of malondialdehyde (MDA), and finally quantitative relative expression analysis of genes involved in various metabolic functions were performed.

The main results showed Cd accumulation increasing in a dose-dependent manner, especially in the gills. The same trend was observed for gene expression relative to oxidative stress. Histological analysis of the gonads highlighted a predominance of hermaphrodite individuals, but after 7 days of exposure to Cd, the percentage of female was largely increased compared with controls, from 17 to 33%. These results demonstrate the endocrine disruption effect of Cd on freshwater pearl mussels.

The pearl mussel Margaritifera margaritifera is sensitive to cadmium since the metallothioneins are poorly induced, gene expression reveals oxidative stress, and gonads tend to be feminized.


Margaritifera margaritifera Cadmium Metallothionein Gene expression Endocrine disruption Gonad histology 



We want to acknowledge the PNRPL (Parc Naturel Régional Périgord Limousin) for their cooperative assistance in the field and their interest in this study. We also thank Eric Goursolle, Julie Chevalier, Bénédicte Pécassou, and Romain Papin-Vincent for their participation in the realization of the different analyses.


  1. Addy S, Cooksley SL, Sime I (2012) Impacts of flow regulation on freshwater pearl mussel (Margaritifera margaritifera) habitat in a Scottish montane river. Sci Total Environ 432:318–328CrossRefGoogle Scholar
  2. Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76:160–202CrossRefGoogle Scholar
  3. Arini A, Daffe G, Gonzalez P, Feurtet-Mazel A, Baudrimont M (2014) Detoxification and genetic recovery capacities of Corbicula fluminea after an industrial metal contamination (Cd and Zn): a one-year depuration experiment. Environ Pollut 192:74–82CrossRefGoogle Scholar
  4. Bagchi D, Joshi SS, Bagchi M, Balmoori J, Benner EJ, Kuszynski CA, Stohs SJ (2000) Cadmium- and chromium-induced oxidative stress, DNA damage, and apoptotic cell death in cultured human chronic myelogenous leukemic K562 cells, promyelocytic leukemic HL-60 cells, and normal human peripheral blood mononuclear cells. J Biochem Mol Toxicol 14:33–41CrossRefGoogle Scholar
  5. Baudrimont M, Andrès S, Durrieu G, Boudou A (2003) The key role of metallothioneins in the bivalve Corbicula fluminea during the depuration phase, after an in situ exposure to Cd and Zn. Aquat Toxicol 63:89–102CrossRefGoogle Scholar
  6. Baudrimont M, Andrès S, Métivaud J, Lapaquellerie Y, Ribeyre F, Maillet N, Latouche C, Boudou A (1999) Field transplantation of the freshwater bivalve Corbicula fluminea along a polymetallic contamination gradient (river Lot, France) - Part II: metallothionein response to metal exposure. Environ Toxicol Chem 18:2472–2477Google Scholar
  7. Baudrimont M, de Montaudouin X, Palvadeau A (2006) Impact of digenean parasite infection on metallothionein synthesis by the cockle (Cerastoderma edule): multivariate field monitoring. Mar Pollut Bull 52:494–502CrossRefGoogle Scholar
  8. Baudrimont M, Lemaire-Gony S, Métivaud J, Ribeyre F, Boudou A (1997) Seasonal variations of metallothionein concentrations in the Asiatic clam (Corbicula fluminea). Comp Biochem Physiol 118C(3):361–367Google Scholar
  9. Bauer G (1987) Reproductive strategy of the freshwater pearl mussel Margaritifera margaritifera. J Anim Ecol 56:691–704CrossRefGoogle Scholar
  10. Bauer G (1988) Threats to the freshwater pearl mussel Margaritifera margaritifera L. in Central Europe. Biol Conserv 45:239–253CrossRefGoogle Scholar
  11. Bensettiti F and Gaudillat V 2004. Cahiers d’habitats Natura 2000. Connaissance et gestion des habitats et des espèces d'intérêt communautaire. Tome 7. Espèces animales. La Documentation française, pp 318–321Google Scholar
  12. Bertucci A, Pierron F, Thébault J, Klopp C, Bellec J, Gonzalez P, Baudrimont M (2017) Transcriptomic responses of the endangered freshwater mussel Margaritifera margaritifera to trace metal contamination in the Dronne River, France. Environ Sci Pollut Res 24:27145–27159. CrossRefGoogle Scholar
  13. Bhat HK (2002) Depletion of mitochondrial DNA and enzyme in estrogen-induced hamster kidney tumors: a rodent model of hormonal carcinogenesis. J Biochem Mol Toxicol 16:1–9CrossRefGoogle Scholar
  14. Blaise C, Gagné F, Salazar M, Salazar S, Trottier S, Hansen PD (2003) Experimentally-induced feminisation of freshwater mussels after long term exposure to a municipal effluent. Fresenius Environ Bull 12:865–870Google Scholar
  15. Chan PK, Cheng SH (2003) Cadmium-induced ectopic apoptosis in zebrafish embryos. Arch Toxicol 77:69–79CrossRefGoogle Scholar
  16. Cosgrove PJ, Hastie LC (2001) Conservation of threatened freshwater pearl mussel populations: river management, mussel translocation and conflict resolution. Biol Conserv 99:183–190CrossRefGoogle Scholar
  17. Cossu C, Doyotte A, Babut M, Exinger A, Vasseur P (2000) Antioxidant biomarkers in freshwater bivalves, Unio tumidus, in response to different contamination profiles of aquatic sediments. Ecotoxicol Environ Saf 45:106–121CrossRefGoogle Scholar
  18. Couillard Y, Campbell PGC, Tessier A (1993) Response of metallothionein concentrations in a freshwater bivalve Anodonta grandis along an environmental cadmium gradient. Limnol Oceanogr 38:299–313CrossRefGoogle Scholar
  19. Couillard Y, Campbell PGC, Pellerin-Massicottee J, Auclair JC (1995) Field transplantation of a freshwater bivalve, Pyganodon grandis, across a metal contamination gradient. II. Metallothionein response to Cd and Zn exposure, evidence for cytotoxicity, and links to effects at higher levels of biological organization. Can J Fish Aquat Sci 52:703–715CrossRefGoogle Scholar
  20. Farcy E, Gagné F, Martel L, Fortier M, Trépanier S, Brousseau P, Fournier M (2011) Short-term physiological effects of a xenobiotic mixture on the freshwater mussel Elliptio complanata exposed to municipal effluents. Environ Res 111:1096–1106CrossRefGoogle Scholar
  21. Flynn K, Spellman T (2009) Environmental levels of atrazine decrease spatial aggregation in the freshwater mussel, Elliptio complanata. Ecotoxicol Environ Saf 72:1228–1233CrossRefGoogle Scholar
  22. Frank H, Gerstmann S (2007) Declining populations of freshwater pearl mussels (Margaritifera margaritifera) are burdened with heavy metals and DDT/DDE. Ambio 36(7):571–574CrossRefGoogle Scholar
  23. Gabe M 1968. Techniques histologiques. Edition Masson et CieGoogle Scholar
  24. Gagné F, Blaise C, Hellou J (2004) Endocrine disruption and health effects of caged mussels, Elliptio complanata placed downstream from a primary-treated municipal effluent plume for 1 year. Comp Biochem Physiol C Toxicol Pharmacol 138(1):33–44CrossRefGoogle Scholar
  25. Geist J (2010) Strategies for the conservation of endangered freshwater pearl mussels (Margaritifera margaritifera; L.): a synthesis of conservation genetics and ecology. Hydrobiologia 644:69–88CrossRefGoogle Scholar
  26. Geist J, Kuehn R (2005) Genetic diversity and differentiation of central European freshwater pearl mussel (Margaritifera margaritifera L.) populations: implications for conservation and management. Mol Ecol 14(2):425–439CrossRefGoogle Scholar
  27. Giguère A, Couillard Y, Campbell PGC, Perceval O, Hare L, Pinel-Alloul B (2003) Steady-state distribution of metals among metallothionein and other cytosolic ligands and links to cytotoxicity in bivalves living along a polymetallic gradient. Aquat Toxicol 64:185–200CrossRefGoogle Scholar
  28. Gillis PL (2012) Impacts of urban runoff and municipal wastewater effluents on the health of the freshwater mussel, Lasmigona costata. Sci Total Environ 431:348–356CrossRefGoogle Scholar
  29. Gillis PL, Higgins SK, Jorge MB (2014) Evidence of oxidative stress in wild freshwater mussels (Lasmigona costata) exposed to urban-derived contaminants. Ecotoxicol Environ Saf 102:62–69CrossRefGoogle Scholar
  30. Gonzalez P, Baudrimont M, Boudou A, Bourdineaud JP (2006) Comparative effects of direct cadmium contamination on gene expression in gills, liver, skeletal muscles and brain of the zebra fish (Danio rerio). Biometals 19:225–235CrossRefGoogle Scholar
  31. Gumpinger C, Hauer C, Scheder C (2015) The current status and future challenges for the preservation and conservation of freshwater pearl mussel habitats. Limnologica 50:1–3CrossRefGoogle Scholar
  32. Hagen T, D'Amico G, Quintero M, Palacios-Callender M, Hollis V, Lam F, Moncada S (2004) Inhibition of mitochondrial respiration by the anticancer agent 2-methoxyestradiol. Biochem Biophys Res Commun 322:923–929CrossRefGoogle Scholar
  33. Hastie LC, Young MR, Boon PJ, Cosgrove PJ, Henniger B (2008) Sizes, densities and age structures of Scottish Margaritifera margaritifera (L.) populations. Aquat Conserv Mar Freshwat Ecosyst 10:229–247CrossRefGoogle Scholar
  34. Hauer C (2015) Review of hydro-morphological management criteria on a river basin scale for preservation and restoration of freshwater pearl mussel habitats. Limnologica 50:40–53CrossRefGoogle Scholar
  35. Kägi JHR (1991) Overview of metallothionein. In: Abelson JN, Simon MI (eds) Methods in enzymology. Academic Press, San Diego, CA, pp 613–626Google Scholar
  36. Legeay A, Achard-Joris M, Baudrimont M, Massabuau JC, Bourdineaud JP (2005) Impact of cadmium contamination and oxygen levels on biochemical responses in the Asiatic clam Corbicula fluminea. Aquat Toxicol 74:242–253CrossRefGoogle Scholar
  37. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25(4):402–408CrossRefGoogle Scholar
  38. Marie V, Baudrimont M, Boudou A (2006a) Cadmium and zinc bioaccumulation and metallothionein response in two freshwater bivalves (Corbicula fluminea and Dreissena polymorpha) transplanted along a polymetallic gradient. Chemosphere 65:609–617CrossRefGoogle Scholar
  39. Marie V, Gonzalez P, Baudrimont M, Bourdineaud JP, Boudou A (2006b) Metallothionein response to cadmium and zinc exposures compared in two freshwater bivalves, Dreissena polymorpha and Corbicula fluminea. Biometals 19:399–407CrossRefGoogle Scholar
  40. Mouchet F, Baudrimont M, Gonzalez P, Cuenot Y, Bourdineaud JP, Boudou A, Gauthier L (2006) Genotoxic and stress inductive potential of cadmium in Xenopus laevis larvae. Aquat Toxicol 78:157–166CrossRefGoogle Scholar
  41. Motte G (2005) Biologie et statut de la moule perlière en Wallonie. Forêt wallonne No 74:10–16Google Scholar
  42. Orieux N, Cambier S, Gonzalez P, Morin B, Adam C, Garnier-Laplace J, Bourdineaud JP (2011) Genotoxic damages in zebrafish submitted to a polymetallic gradient displayed by the Lot River (France). Ecotoxicol Environ Saf 74:974–983CrossRefGoogle Scholar
  43. Paul-Pont I, Gonzalez P, Baudrimont M, Nili H, de Montaudouin X (2010) Short-term metallothionein inductions in the edible cockle Cerastoderma edule after cadmium or mercury exposure: discrepancy between mRNA and protein responses. Aquat Toxicol 97:260–267CrossRefGoogle Scholar
  44. Perceval O, Couillard Y, Pinel-Alloul B, Giguère A, Campbell PGC (2004) Metal-induced stress in bivalves living along a gradient of Cd contamination: relating sub-cellular metal distribution to population-level responses. Aquat Toxicol 69:327–345CrossRefGoogle Scholar
  45. Pierron F, Baudrimont M, Dufour S, Elie P, Bossy A, Baloche S, Mesmer-Dudons N, Gonzalez P, Bourdineaud J-P, Massabuau J-C (2008) How cadmium could compromise the completion of the European eel’s reproductive migration. Environ Sci Technol 42:4607–4612CrossRefGoogle Scholar
  46. Pierron F, Baudrimont M, Dufour S, Elie P, Bossy A, Lucia M, Massabuau JC (2009) Ovarian gene expression and effects of cadmium pre-exposure during artificial sexual maturation of the European eel (Anguilla anguilla). BioMetals 22:985–994CrossRefGoogle Scholar
  47. Rotchell JM, Ostrander GK (2003) Molecular markers of endocrine disruption in aquatic organisms. J Toxicol Environ Health 6:453–495CrossRefGoogle Scholar
  48. Scheder C, Lerchegger B, Flodl P, Csar D, Gumpinger C, Hauer C (2015) River bed stability versus clogged interstitial: depth-dependent accumulation of substances in freshwater pearl mussel (Margaritifera margaritifera L.) habitats in Austrian streams as a function of hydromorphological parameters. Limnologica 50:29–39CrossRefGoogle Scholar
  49. Spencer WA, Vadhanam MV, Jeyabalan J, Gupta RC (2012) Oxidative DNA damage following microsome/Cu(II)-mediated activation of the estrogens, 17β-estradiol, equilenin, and equilin: role of reactive oxygen species. Chem Res Toxicol 25:305–314CrossRefGoogle Scholar
  50. Strayer DL, Downing JA, Haag WR, King TL, Layzer JB, Newton TJ (2004) Changing perspectives on pearly mussels, North America's most imperiled animals. Bioscience 54:429–439CrossRefGoogle Scholar
  51. Treasurer JW, Hastie LC, Hunter D, Duncan F, Treasurer CM (2006) Effects of Margaritifera margaritifera glochidial infection on performance of tank-reared Atlantic salmon (Salmo salar). Aquaculture journal 256:74–79CrossRefGoogle Scholar
  52. Varandas S, Lopes-Lima M, Teixeira A, Hinzmann M, Reis J, Cortes R, Machado J, Sousa R (2013) Ecology of southern European pearl mussels (Margaritifera margaritifera): first record of two new populations on the rivers Terva and Beça (Portugal). Aquat Conserv: Mar Freshw Ecosyst 23:374–389CrossRefGoogle Scholar
  53. Vaughn CC, Taylor CM (1999) Impoundments and the decline of freshwater mussels: a case study of an extinction gradient. Conserv Biol 13:912–920CrossRefGoogle Scholar
  54. Viarengo A (1989) Heavy metals in marine invertebrates: mechanisms of regulation and toxicity at the cellular level. Aquat Sci 1:295–317Google Scholar
  55. Wächtler K, Dreher-Mansur MC and Richter T 2001. Larval types and early postlarval biology in naiads (Unionoida). In: Bauer G, Wäxhtler K (eds) Ecology and evolution of the freshwater mussels Unionoidea. Ecological studies, 145. Springer Verlag Heidelberg, pp. 93–125Google Scholar
  56. Wang Y, Fang J, Leonard SS, Rao KMK (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med 36:1434–1443CrossRefGoogle Scholar
  57. Yang HY, Wang YM, Peng SQ (2009) Basal expression of metallothionein suppresses butenolide-induced oxidative stress in liver homogenates in vitro. Toxicon 53:246–253CrossRefGoogle Scholar
  58. Ziuganov VV (2005) A long-lived parasite extending the host life span: the pearl mussel Margaritifera margaritifera elongates host life by turns out the program of accelerated senescence in salmon Salmo salar. Dokl Biol Sci 403:291–294CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Bordeaux, UMR CNRS EPOC 5805, Aquatic Ecotoxicology teamArcachonFrance

Personalised recommendations