Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 18, pp 18411–18420 | Cite as

Photochemical aging and secondary organic aerosols generated from limonene in an oxidation flow reactor

  • Salah Eddine SbaiEmail author
  • Bentayeb Farida
Research Article
  • 57 Downloads

Abstract

Oxidation flow reactors (OFRs) are increasingly used to study the formation and evolution of secondary organic aerosols (SOA) in the atmosphere. The OH/HO2 and OH/O3 ratios in OFRs are similar to tropospheric ratios. In the present work, we investigated the production of SOA generated by OH oxydation and ozonolysis of limonene in OFR as a function of OH exposure and O3 exposure. The results are compared with those obtained from the simulation chambers. The precursor gas is exposed to OH concentrations ranging from 2.11 × 108 to 1.91 × 109 molec cm−3, with an estimated exposure time in the OFR of 137 s. In the environmental chambers, the precursor was oxidized using OH concentrations between 2.10 × 106 and 2.12 × 107 molec cm−3 over exposure times of several hours. In the overlapping OH exposure region, the highest SOA yields are obtained in the OFR, which is explained by the ozonolysis of limonene in the OFR. However, the yields decrease with the increase of OHexp in both systems.

Keywords

Photochemistry Aging Particles OFR Atmosphere Environmental chambers 

Notes

Acknowledgments

The authors thank the University Claude Bernard for the technical and financial support provided by the Institute for Research on catalysis and the environment of Lyon (IRCELYON). We thank Mr. Christian George who participated in all the steps of preparation of this paper except in the redaction.

Funding

This study was supported by the European Research Council under the Horizon 2020 Research and Innovation Program Project of the European Union under Convention N° 690958 (MARSU).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Atkinson R (1997) Gas-phase tropospheric chemistry of volatile organic compounds alkanes and alkenes. J Phys Chem 26:215–290Google Scholar
  2. Cappa CD, Wilson KR (2012) Multi-generation gas-phase oxidation, equilibrium partitioning, and the formation and evolution of secondary organic aerosol. Atmos Chem Phys 12:9505–9528.  https://doi.org/10.5194/acp-12-9505-2012 CrossRefGoogle Scholar
  3. Chacon-Madrid HJ, Donahue NM (2011) Fragmentation vs. functionalization: chemical aging and organic aerosol formation. Atmos Chem Phys 11:10553–10563.  https://doi.org/10.5194/acp-11-10553-2011 CrossRefGoogle Scholar
  4. Chen S, Brune WH, Lambe AT, Davidovits P, Onasch TB (2013) Modeling organic aerosol from the oxidation of α-pinene in a potential aerosol mass (PAM) chamber. Atmos Chem Phys 13:5017–5031.  https://doi.org/10.5194/acp-13-5017-2013 CrossRefGoogle Scholar
  5. Ehn M, Thornton JA, Kleist E, Sipilä M, Junninen H, Pullinen I et al (2014) A large source of low-volatility secondary organic aerosol. Nature 506:476–479.  https://doi.org/10.1038/nature13032 CrossRefGoogle Scholar
  6. Davis DD, Ravishankara AR, Fischer S (1979) SO2 oxidation via the hydroxyl radical: atmospheric fate of HSOx radicals. Geophys Res Lett 6:113–116.  https://doi.org/10.1029/GL006i002p00113 CrossRefGoogle Scholar
  7. Fang W, Gong L, Shengn L (2017) Online analysis of secondary organic aerosols from OH-initiated photooxidation and ozonolysis of α-pinene, β-pinene, Δ3-carene and d-limonene by thermal desorption–photoionisation aerosol mass spectrometry. Environ Chem 14:75–90.  https://doi.org/10.1071/EN16128 CrossRefGoogle Scholar
  8. Gustavo S et al (2017) Time-resolved monitoring of polycyclic aromatic hydrocarbonsadsorbed on atmospheric particles. Environ Sci Pollut Res 24:19517–19523.  https://doi.org/10.1007/s11356-017-9612-2 CrossRefGoogle Scholar
  9. Friedman B, Brophy P, Brune WH, Farmer DK (2016) Anthropogenic sulfur perturbations on biogenic oxidation: SO2 additions impact gas-phase OH oxidation products of α- and β-pinene. Environ Sci Technol 50:1269–1279CrossRefGoogle Scholar
  10. Henry KM, Donahue NM (2012) Photochemical aging of α-pinene secondary organic aerosol: effects of OH radical sources and photolysis. Phys Chem A 116:5932–5940.  https://doi.org/10.1021/jp210288s CrossRefGoogle Scholar
  11. Hunter JF, Carrasquillo AJ, Daumit KE, Kroll JH (2014) Secondary organic aerosol formation from acyclic, monocyclic, and polycyclic alkanes. Environ Sci Technol 48:10227–10234.  https://doi.org/10.1021/es502674s CrossRefGoogle Scholar
  12. Jimenez JL, Canagaratna MR, Donahue NM, Prevot ASH, Zhang Q, Kroll JH, Worsnop DR (2009) Evolution of organic aerosols in the atmosphere. Sci 326:1525–1529.  https://doi.org/10.1126/science.1180353 CrossRefGoogle Scholar
  13. Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ, Facchini MC, Wilson J (2005) Organic aerosol and global climate modelling: a review. Atmos Chem Phys 5:1053–1123CrossRefGoogle Scholar
  14. Kang E, Toohey DW, Brune WH (2011) Dependence of SOA oxidation on organic aerosol mass concentration and OH exposure: experimental PAM chamber studies. Atmos Chem Phys 11:1837–1852CrossRefGoogle Scholar
  15. Kang E, Root MJ, Toohey DW, Brune WH (2007) Introducing the concept of Potential Aerosol Mass (PAM). Atmos Chem Phys 7:5727–5744CrossRefGoogle Scholar
  16. Kang E, Lee M, Brune WH, Lee T, Park T, Ahn J, Shang X (2018) Photochemical aging of aerosol particles in different air masses arriving at Baengnyeong Island, Korea. Atmos Chem Phys 18:6661 6677.  https://doi.org/10.5194/acp-18-6661-2018 Google Scholar
  17. Kroll JH, Smith JD, Che DL, Kessler SH, Worsnop DR, Wilson KR (2009) Measurement of fragmentationand functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol. Phys Chem Chem Phys 11:8005–8014.  https://doi.org/10.1039/b905289e CrossRefGoogle Scholar
  18. Kim H, Barkey B, Paulson SE (2012) Real refractive indices and formation yields of secondary organic aerosol generated from photooxidation of limonene and α-pinene: the effect of the HC/NOx ratio. Phys Chem A 116:6059–6067.  https://doi.org/10.1021/jp301302z CrossRefGoogle Scholar
  19. Lambe AT, Chhabra PS, Onasch TB, Brune WH, Hunter JF, Kroll JH, Davidovits P (2015) Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield. Atmos Chem Phys 15:3063–3075CrossRefGoogle Scholar
  20. Lambe AT, Onasch TB, Massoli P, Croasdale DR, Wright JP, Ahern AT, Davidovits P (2011) Laboratory studies of the chemical composition and cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) and oxidized primary organic aerosol (OPOA). Atmos Chem Phys 11:8913–8928.  https://doi.org/10.5194/acp-11-8913-2011 CrossRefGoogle Scholar
  21. Lambe AT, Onasch TB, Croasdale DR, Wright JP, Martin AT, Franklin JP, Davidovits P (2012) Transitions from functionalization to fragmentation reactions of laboratory secondary organic aerosol (SOA) generated from the OH oxidation of alkane precursors. Environ Sci Technol 46:5430–5437.  https://doi.org/10.1021/es300274t CrossRefGoogle Scholar
  22. Leungsakul S, Jeffries HE, Kamens RM (2005) A kinetic mechanism for predicting secondary aerosol formation from the reactions of d-limonene in the presence of oxides of nitrogen and natural sunlight. Atmos Environ 39:7063–7082CrossRefGoogle Scholar
  23. Liu J, Chu B, Chem T, Liu C, Wang L, Bao X, He H (2018) Secondary organic aerosol formation from ambient air at an urban site in Beijing: effects of OH exposure and precursor concentrations. Environ Sci Technol 52:6834–6841CrossRefGoogle Scholar
  24. Loza CL, Chhabra PS, Yee LD, Craven JS, Flagan RC, Seinfeld JH (2012) Chemical aging of m-xylene secondary organic aerosol: laboratory chamber study. Atmos Chem Phys 12:151–167CrossRefGoogle Scholar
  25. Loza CL, Craven JS, Yee LD, Coggon MM, Schwantes RH, Shiraiwa M, Seinfeld JH (2014) Secondary organic aerosol yields of 12-carbon alkanes. Atmos Chem Phys 14:1423–1439.  https://doi.org/10.5194/acp-14-1423-2014 CrossRefGoogle Scholar
  26. Mao J, Ren X, Brune WH, Olson JR, Crawford JH, Fried A, Shetter RE (2009) Airborne measurement of OH reactivity during INTEX-B. Atmos Chem Phys 9:163–173.  https://doi.org/10.5194/acp-9-163-2009 CrossRefGoogle Scholar
  27. Mitroo D, Wu J, Colletti P, Lee SS, Walker MJ, Brun WH et al (2018) Atmospheric reactivity of fullerene (C60) aerosols. ACS Earth Space Chem 2:95 102.  https://doi.org/10.1021/acsearthspacechem.7b00116 CrossRefGoogle Scholar
  28. Ng NL, Canagaratna MR, Zhang Q, Jimenez JL, Tian J, Ulbrich IM, Worsnop DR (2010) Organic aerosol components observed in northern hemispheric datasets from aerosol mass spectrometry. Atmos Chem Phys 10:4625–4641.  https://doi.org/10.5194/acp-10-4625-2010 CrossRefGoogle Scholar
  29. Odum JR, Hoffmann T, Bowman F, Collins D, Flagan RC, Seinfeld JH (1996) Gas/particle partitioning and secondary organic aerosol yields. Environ Sci Technol 30:2580–2585CrossRefGoogle Scholar
  30. Ortega AM, Hayes PL, Peng Z, Palm BB, Hu W, Day DA, Li R, Cubison MJ, Brune WH, Graus M et al (2016) Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area. Atmos Chem Phys 16:7411–7433CrossRefGoogle Scholar
  31. Oyaro N, Sellevag S, Nielsen CJ (2005) Atmospheric chemistry of hydrofluoroethers: reaction of a series of hydrofluoroethers with OH radicals and Cl atoms, atmospheric lifetimes, and global warming potentials. J Phys Chem 109:337–346CrossRefGoogle Scholar
  32. Palm BB, Campuzano-Jost P, Day DA, Ortega AM, Fry JL, Brown SS et al (2017) Secondary organic aerosol formation from in situ OH, O3, and NO3 oxidation of ambient forest air in an oxidation flow reactor. Atmos Chem Phys 17:5331–5354.  https://doi.org/10.5194/acp-17-5331-2017 CrossRefGoogle Scholar
  33. Peng Z, Jimenez JL (2017) Modeling of the chemistry in oxidation flow reactors with high initial NO. Atmo Chem Phys 17:11991–12010.  https://doi.org/10.5194/acp-17-11991-2017 CrossRefGoogle Scholar
  34. Peng Z, Palm BB, Day DA, Talukdar RK, Hu W, Lambe AT et al (2018) Model evaluation of new techniques for maintaining high-NO conditions in oxidation flow reactors for the study of OH initiated atmospheric chemistry. ACS Earth Space Chem 2:72 86.  https://doi.org/10.1021/acsearthspacechem.7b00070 CrossRefGoogle Scholar
  35. Pfaffenberger L, Barmet P, Slowik JG, Praplan AP, Dommen J, Prévot ASH, Baltensperger U (2013) The link between organic aerosol mass loading and degree of oxygenation: an -pinene photo-oxidation study. Atmos Chem Phys 12:24735–24764.  https://doi.org/10.5194/acpd-12-24735-2012 CrossRefGoogle Scholar
  36. Presto AA, Donahue NM (2006) Investigation of α-pinene: ozone secondary organic aerosol formation at low total aerosol mass. Environ Sci Technol 40:3536–3543.  https://doi.org/10.1021/es052203z CrossRefGoogle Scholar
  37. Riipinen I, Pierce JR, Yli-Juuti T, Nieminen T, Häkkinen S, Ehn M, Junninen H, Lehtipalo K, Petäjä T, Slowik J, Chang R, Shantz NC, Abbatt J, Leaitch W, Kerminen VM, Worsnop D, Pandis SN, Donahue NM, Kulmala M (2011) Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentration. Atmos Chem Phys 11:3865–3878.  https://doi.org/10.5194/acp-11-3865-2011 CrossRefGoogle Scholar
  38. Salo K, Hallquist M, Jonsson ÅM, Saathoff H, Naumann KH, Spindler C, Donahue NM (2011) Volatility of secondary organic aerosol during OH radical induced ageing. Atmos Chem Phys 11:11055–11067.  https://doi.org/10.5194/acp-11-11055-2011 CrossRefGoogle Scholar
  39. Seinfeld JH, Pankow JF (2003) Organic atmospheric particulate material. Annu Rev Phys Chem 54:121–140CrossRefGoogle Scholar
  40. Pankow JF, Chang EI (2008) Variation in the sensitivity of predicted levels of atmospheric organic particulate matter (OPM). Environ Sci Technol 42:7321–7329CrossRefGoogle Scholar
  41. Perraud V, Bruns EA, Ezell MJ, Johnson SN, Yu Y, Alexander ML, Zelenyuk A, Imre D, Chang WL, Dabdub D, Pankow JF, Finlayson-Pitts BJ (2012) Nonequilibrium atmospheric secondary organic aerosol formation and growth. Proc Natl Acad Sci USA 109:2836–2841.  https://doi.org/10.1073/pnas.1119909109 CrossRefGoogle Scholar
  42. Simonen P, Saukko E, Karjalainen P, Timonen H, Bloss M, Aakko-Saksa P, Dal Maso M (2016) A new oxidation flow reactor for measuring secondary aerosol formation of rapidly changing emission sources. Atmos Meas Tech Discuss:1–27.  https://doi.org/10.5194/amt-2016-300
  43. Wang S, Ye J, Soong R, Wu B, Yu L, Simpson AJ, Chan AWH (2018) Relationship between chemical composition and oxidative potential of secondary organic aerosol from polycyclic aromatic hydrocarbons. Atmos Chem Phys 18:3987–4003.  https://doi.org/10.5194/acp-18-3987-2018 CrossRefGoogle Scholar
  44. Watne ÅK, Westerlund J, Hallquist ÅM, Brune WH, Hallquist M (2017) Ozone and OH-induced oxidation of monoterpenes: changes in the thermal properties of secondary organic aerosol (SOA). J Aerosol Sci 114:31–41CrossRefGoogle Scholar
  45. Zhang X, Azhar G, Rogers SC, Foster SR, Luo S, We JY (2014) Overexpression of p49/STRAP alters cellular cytoskeletal structure and gross anatomy in mice. BMC Cell Biol:15–32.  https://doi.org/10.1186/1471-2121-15-32
  46. Zhang Y, Chen Y, Lambe AT, Olson NE, Lei Z, Craig RL et al (2018) Effect of the aerosol-phase state on secondary organic aerosol formation from the reactive uptake of isoprene-derived epoxydiols (IEPOX). Environ Sci Technol Lett 5:167 174.  https://doi.org/10.1021/acs.estlett.8b00044 Google Scholar
  47. Zhao DF, Kaminski M, Schlag P, Fuchs H, Acir IH, Bohn B, Mentel TF (2015) Secondary organic aerosol formation from hydroxyl radical oxidation and ozonolysis of monoterpenes. Atmos Chem Phys 15:991–1012.  https://doi.org/10.5194/acp-15-991-2015 CrossRefGoogle Scholar
  48. Zhao D, Schmitt SH, Wang M, Acir IH, Tillmann R, Tan Z, Mentel TF (2018b) Effects of effects of NOx and SO2 on the secondary organic aerosol formation from photooxidation of α-pinene and limonene. Atmos Chem Phys 18:1611–1628.  https://doi.org/10.5194/acp-18-1611-2018
  49. Zhao Y, Lambe AT, Saleh R, Saliba G, Robinson AL (2018a) Secondary organic aerosol production from gasoline vehicle exhaust: effects of engine technology, cold start, and emission certification standard. Environ Sci Technol 52:1253–1261.  https://doi.org/10.1021/acs.est.7b05045 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Université LyonLyonFrance
  2. 2.Department of physics, Laboratoires de physique des hauts Energies Modélisation et SimulationMohammed V University in RabatRabatMorocco

Personalised recommendations