Advertisement

The characterization and methane adsorption of Ag-, Cu-, Fe-, and H-exchanged chabazite-rich tuff from Turkey

  • Meryem SakızcıEmail author
  • Mehmet Özer
Research Article
  • 43 Downloads

Abstract

In this study, a chabazite-rich tuff (CHA) from the Bala deposit of Ankara region (Turkey) and its modified forms (CuCHA, AgCHA, FeCHA, and HCHA samples) were investigated at 273 and 298 K using volumetric apparatus up to 100 kPa. The chabazite samples were characterized by using thermal analysis (TG-DTG-DTA), X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy with detector X-ray energy dispersive (SEM-EDX), Fourier transform infrared (FT-IR), and N2 adsorption methods. It was found that natural chabazite is composed of predominantly chabazite with small amounts of clinoptilolite and erionite. XRD showed that there are major structural changes to Fe- and H-exchanged chabazite samples. Capacity of chabazites for CH4 ranged from 0.168 and 1.341 mmol/g. Among all the modified forms, it was observed that Ag form of chabazite zeolite had the greatest methane adsorption capacity at both temperatures.

Keywords

Adsorption-desorption Chabazite Methane XRD FT-IR TG-DTG-DTA SEM 

Notes

Acknowledgements

Special thanks to Matthias Thommes for his helpful suggestions.

Funding information

This research was supported by Anadolu University Commission for Scientific Research Projects under grant no. 1404F203.

References

  1. Ackley MW, Yang RT (1991a) Diffusion in ion-exchanged clinoptilolites. AIChE J 37:1645–1656.  https://doi.org/10.1002/aic.690371107 CrossRefGoogle Scholar
  2. Ackley MW, Yang RT (1991b) Adsorption characteristics of high-exchange clinoptilolites. Ind Eng Chem Res 30:2523–2530.  https://doi.org/10.1021/ie00060a004 CrossRefGoogle Scholar
  3. Ackley MW, Giese RF, Yang RT (1992) Clinoptilolite: an untapped potential for kinetic gas separations. Zeolites 12:780–787.  https://doi.org/10.1016/0144-2449(92)90050-Y CrossRefGoogle Scholar
  4. Aguilar-Armenta G, Hernandez-Ramirez G, Flores-Loyola E, Ugarte-Castaneda A, Silva-Gonzalez R, Tabares-Munoz C, Jimenez-Lopez A, Rodriguez-Castellon E (2001) Adsorption kinetics of CO2, O2, N2, and CH4 in cation-exchanged clinoptilolite. J Phys Chem B 105:1313–1319.  https://doi.org/10.1021/jp9934331 CrossRefGoogle Scholar
  5. Aguilar-Armenta G, Patiño-Iglesias ME, Leyva-Ramos R (2003) Adsorption kinetic behaviour of pure CO2, N2 and CH4 in natural clinoptilolite at different temperatures. Adsorpt Sci Technol 21:81–91.  https://doi.org/10.1260/02636170360699831 CrossRefGoogle Scholar
  6. Akdeniz Y, Ülkü S (2008) Thermal stability of Ag-exchanged clinoptiloliterich mineral. J Therm Analysis Calorim 94:703–710.  https://doi.org/10.1007/s10973-008-9358-7 CrossRefGoogle Scholar
  7. Alberti A, Galli E, Vezzaleni G, Passaglia E, Zanazzi PF (1982) Position of cations and water molecules in hydrated chabazite, natural and Na-, Ca-, Sr- and K-exchanged chabazites. Zeolites 2:303–309.  https://doi.org/10.1016/S0144-2449(82)80075-4 CrossRefGoogle Scholar
  8. Ateş A, Hardacre C (2012) The effect of various treatment conditions on natural zeolites: ion exchange, acidic, thermal and steam treatments. J Collid Interf Sci 372:130–140.  https://doi.org/10.1016/j.jcis.2012.01.017 CrossRefGoogle Scholar
  9. Aysan H, Edebali S, Özdemir C, Karakaya MC, Karakaya N (2016) Use of chabazite, a naturally abundant zeolite, for the investigation of the adsorption kinetics and mechanism of methylene blue dye. Microporous Mezoporous Mater 235:78–86.  https://doi.org/10.1016/j.micromeso.2016.08.007 CrossRefGoogle Scholar
  10. Baerlocher CH, Meier WM, Olson DH (2001) Atlas of zeolite framework types. Elsevier, AmsterdamGoogle Scholar
  11. Barrer RM (1978) Zeolites and Clay Minerals as Sorbents and Molecular Sieves. Academic Press, London.  https://doi.org/10.1002/cite.330520426 Google Scholar
  12. Barrer RM, Baynham JW (1956) Synthetic chabazites: correlation between isomorphous replacements, stability, and sorption capacity. J Chem Soc:2892–2903.  https://doi.org/10.1039/jr9560002892
  13. Barrer RM, Langley DA (1958a) Reactions and stability of chabazite-like phases. Part I. Ion-exchanged forms of natural chabazite. J Chem Soc 0:3804–3811.  https://doi.org/10.1039/JR9580003804
  14. Barrer RM, Langley DA (1958b) Reactions and stability of chabazite-like phases. Part II. Ion-exchanged forms of some synthetic species. J Chem Soc 0:3811–3816.  https://doi.org/10.1039/JR9580003811
  15. Barrer RM, Langley DA (1958c) Reactions and stability of chabazite-type phases. Part III. Intracrystalline water. J Chem Soc 0:3817–3824.  https://doi.org/10.1039/JR9580003817
  16. Bish DL, Carey JW (2001) Thermal behavior of natural zeolites. In: Bish DL, Ming DW (eds) Natural zeolites: occurrence, properties, applications, reviews in mineralogy and geochemistry. Mineralogical Society of America, Washington, pp 403–452.  https://doi.org/10.2138/rmg.2001.45.13 CrossRefGoogle Scholar
  17. Breck DW (1974) Zeolite molecular sieves. Wiley, New York.  https://doi.org/10.1093/chromsci/13.4.18A-c Google Scholar
  18. Calligaris M, Nardin G, Randaccio L (1983) Cation site location in hydrated chabazites. Crystal structure of potassium- and silver- exchanged chabazites. Zeolites 1983 3:205–208.  https://doi.org/10.1016/0144-2449(83)90008-8 Google Scholar
  19. Calligaris M, Mezetti A, Nardin G, Randaccio L (1984) Cation sites and framework deformations in dehydrated chabazites. Crystal structure of a fully silver-exchanged chabazite. Zeolites 4:323–328.  https://doi.org/10.1016/0144-2449(84)90007-1 CrossRefGoogle Scholar
  20. Calligaris M, Mezetti A, Nardin G, Randaccio L (1986) Crystal structures of the hydrated and dehydrated forms of a partially cesium-exchanged chabazite. Zeolites 6:137–141.  https://doi.org/10.1016/S0144-2449(86)80012-4 CrossRefGoogle Scholar
  21. Chen F, Liu Y, Wasylishen RE, Xu Z, Steven M (2012) Solid-state NMR and TGA studies of silver reduction in chabazite. J Nanosci Nanotechnol 12:1988–1993CrossRefGoogle Scholar
  22. Christidis GE, Moraetis D, Keheyan E, Akhalbedashvili L, Kekelidze N, Gevorkyan R, Yeritsyan H, Sargsyan H (2003) Chemical and thermal modification of natural HEU-type zeolitic materials from Armenia, Georgia and Greece. Appl Clay Sci 24:79–91.  https://doi.org/10.1016/S0169-1317(03)00150-9 CrossRefGoogle Scholar
  23. De Gennaro M, Colella C, Franco E, Aiello R (1983) Italian zeolites 1. Mineralogical and technical features of Neapolitan yellow tuff. Ind Miner 186:47–53Google Scholar
  24. De Gennaro M, Colella C, Aiello R, Franco E (1984) Italian zeolites 2. Mineralogical and technical features of Campanian tuff. Ind Miner 204:97–109Google Scholar
  25. Delgado JA, Uguina MA, Gómez JM, Ortega L (2006) Adsorption equilibrium of carbon dioxide, methane and nitrogen onto Na and H-mordenite at high pressures. Sep Purif Technol 48:223–228.  https://doi.org/10.1016/j.seppur.2005.07.027 CrossRefGoogle Scholar
  26. Drebushchak VA (1999) Measurements of heat of zeolite dehydration by scanning heating. J Therm Anal Calori 58:653–662.  https://doi.org/10.1023/A:1010116930852 CrossRefGoogle Scholar
  27. Dubinin MM (1956) In: Walker PL Jr (ed) Chemistry and physics of carbon. Arnold, London, p 51Google Scholar
  28. Elaiopoulos K, Perraki T, Grigoropoulou E (2008) Mineralogical study and porosimetry measurements of zeolites from Scaloma area, Thrace, Greece. Microporous Mezoporous Mater 112:441–449.  https://doi.org/10.1016/j.micromeso.2007.10.021 CrossRefGoogle Scholar
  29. Elaiopoulos K, Perraki T, Grigoropoulou E (2010) Monitoring the effect of hydrothermal treatments on the structure of a natural zeolite through. Microporous Mezoporous Mater 134:29–43.  https://doi.org/10.1016/j.micromeso.2010.05.004 CrossRefGoogle Scholar
  30. Erdoğan-Alver B, Sakızcı M (2015) Influence of acid treatment on structure of clinoptilolite tuff and its adsorption of methane. Adsorption 21:391–399CrossRefGoogle Scholar
  31. Faghihian H, Talebi M, Pirouzi M (2008) Adsorption of nitrogen from natural gas by clinoptilolite. J Iran Chem Soc 5:394–399CrossRefGoogle Scholar
  32. Fischer M, Bell RG (2014) Cation-exchanged SAPO-34 for adsorption-based hydrocarbon separations: predicactions from dispersion-corrected DFT calculations. Phys Chem Chem Phys 16:21062–21072CrossRefGoogle Scholar
  33. Gelves JF, Gallego GS, Marquez MA (2016) Mineralogical characterization of zeolites present on basaltic rocks from Combia geological formation, La Pintada (Colombia). Microporous Mezoporous Mater 235:9–19.  https://doi.org/10.1016/j.micromeso.2016.07.035 CrossRefGoogle Scholar
  34. Gottardi G, Galli E (1985) Minerals and rocks: natural zeolites. Springer, BerlinCrossRefGoogle Scholar
  35. Handke M, Mozgawa W (1993) Vibrational spectroscopy of the amorphous silicates. Vib Spectrosc 5:75–84.  https://doi.org/10.1016/0924-2031(93)87057-Z CrossRefGoogle Scholar
  36. Hengeveld H, Whitewood B, Fergusson A (2005) Environment Canada. Downsview, OntarioGoogle Scholar
  37. Hernandez MA, Petranovskii V, Avalos M, Portillo R, Rojas F, Lara VH (2006) Influence of the Si/Al framework ratio on the microporosity of dealuminated mordenite as determined from N2 adsorption. Sep Sci Technol 41:1907–1925.  https://doi.org/10.1080/01496390600674901 CrossRefGoogle Scholar
  38. Hernandez-Huesca R, Diaz L, Aguilar-Armenta G (1999) Adsorption equilibria and kinetics of CO2, CH4 and N2 in natural zeolites. Sep Purif Technol 15:163–173.  https://doi.org/10.1016/S1383-5866(98)00094-X CrossRefGoogle Scholar
  39. Jayaraman A, Hernandez-Maldonado AJ, Yang RT, Chinn D, Munson CL, Mohr DH (2004) Clinoptilolites for nitrogen/methane separation. Chem Eng Sci 59:2407–2417.  https://doi.org/10.1016/j.ces.2003.10.030 CrossRefGoogle Scholar
  40. Jayaraman A, Yang RT, Chinn D, Munson CL (2005) Tailored clinoptilolites for nitrogen/methane separation. Ind Eng Chem Res 44:5184–5192.  https://doi.org/10.1021/ie0492855 CrossRefGoogle Scholar
  41. Karge HG (1998) Characterization by infrared spectroscopy. Microporous Mesoporous Mater 22(4–6):547–549.  https://doi.org/10.1016/S1387-1811(98)80021-8 CrossRefGoogle Scholar
  42. Koizumi M (1953) The differential thermal analysis curves and the dehydration curves of zeolites. Mineral J 1:36–47.  https://doi.org/10.2465/minerj1953.1.36 CrossRefGoogle Scholar
  43. Korkuna O, Leboda R, Skubiszewska-Zieba J, Vrublevs’ka T, Gun’ko VM, Ryczkowski J (2006) Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite. Microporous Mezoporous Mater 87:243–254.  https://doi.org/10.1016/j.micromeso.2005.08.002 CrossRefGoogle Scholar
  44. Kouvelos E, Kesore K, Steriotis T, Grigoropoulou H, Bouloubasi D, Theophilou N, Tzintzos S, Kanelopoulos N (2007) High pressure N2/CH4 adsorption measurements in clinoptilolites. Microporous Mezoporous Mater 99:106–111.  https://doi.org/10.1016/j.micromeso.2006.07.036 CrossRefGoogle Scholar
  45. Lide DR (2003) CRC Handbook of Chemistry and Physics. CRC Press, Boca RatonGoogle Scholar
  46. Lippens BC, de Boer JH (1965) Studies on pore systems in catalysts: V. The t method. J Catal 4:319–323.  https://doi.org/10.1016/0021-9517(65)90307-6 CrossRefGoogle Scholar
  47. Masoudi-Nejad M, Fatemi S (2014) Thermodynamic adsorption data of CH4, C2H6, C2H4 as the OCM process hydrocarbons on SAPO-34 molecular sieve. J Ind Eng Chem 20:4045–4053.  https://doi.org/10.1016/j.jiec.2013.12.107 CrossRefGoogle Scholar
  48. Mees FDP, Martens LRM, Janssen MJG, Verberckmoes AA, Vansant EF (2003) Improvement of the hydrothermal stability of SAPO-34. Chem Commun:44–45.  https://doi.org/10.1039/B210337K
  49. Meier WM, Olson DH (1992) Atlas of zeolite structure types. Zeolites 12:449–656CrossRefGoogle Scholar
  50. Menon VC, Komarneni S (1998) Porous adsorbents for vehicular natural gas storage: a review. J Porous Mater 5:43–58CrossRefGoogle Scholar
  51. Michelena JA, Vansant EF, De Bikvre P (1978) Interaction energy calculations in zeolites Part II. The interaction energy of Ar, CO and CO2 molecules adsorbed in the zeolites NaY and CaY. Rec Trav Chim 97:170–174.  https://doi.org/10.1002/recl.19780970607 CrossRefGoogle Scholar
  52. Mortier MJ, Pluth JJ, Smith JV (1977) Positions of cations and molecules in zeolites with the chabazite framework. I. Dehydrated Ca-exchanged chabazite. Mater Res Bull 12:97–102.  https://doi.org/10.1016/0025-5408(77)90094-0 CrossRefGoogle Scholar
  53. Mozgawa W (2000) The influence of some heavy metals cations on the FTIR spectra of zeolites. J Mol Struct 555:299–304.  https://doi.org/10.1016/S0022-2860(00)00613-X CrossRefGoogle Scholar
  54. Mozgawa W, Sitarz M, Rokita M (1999) Spectroscopic studies of different aluminosilicate structures. J Mol Struct 511–512:251–257.  https://doi.org/10.1016/S0022-2860(99)00165-9 CrossRefGoogle Scholar
  55. Mozgawa W, Fojud Z, Handke M, Jurga S (2002) MAS NMR and FTIR spectra of framework aluminosilicates. J Mol Struct 614:281–287.  https://doi.org/10.1016/S0022-2860(02)00262-4 CrossRefGoogle Scholar
  56. Mumpton FM, Ormsby WC (1976) Morphology of zeolites in sedimentary rocks by scanning electron microscopy. Clay Clay Miner 24:1–23CrossRefGoogle Scholar
  57. Nagano J, Eguchi T, Asanuma T, Masui H, Nakayama H, Nakamura N, Derouane EG (1999) 1H and 129Xe NMR investigation of the microporous structure of dealuminated H-mordenite probed by methane and xenon. Microporous Mezoporous Mater 33:249–256.  https://doi.org/10.1016/S1387-1811(99)00143-2 CrossRefGoogle Scholar
  58. Nakatsuka A, Okada H, Fujiwara K, Nakayama N, Mizota T (2007) Crystallographic configurations of water molecules and exchangeable cations in a hydrated natural CHA-zeolite (chabazite). Microporous Mesoporous Mater 102:188–195.  https://doi.org/10.1016/j.micromeso.2006.12.032 CrossRefGoogle Scholar
  59. Ogorodova LP, Kiseleva IA, Mel’chakova LV, Belitskii I (2002) A Thermodynamic properties of calcium and potassium chabazites. Geochem Int 40:466–471Google Scholar
  60. Passaglia E (1970) The crystal chemistry of chabazites. Am Mineral 55:1278–1301Google Scholar
  61. Prakash AM, Unnikrishnan S (1994) Synthesis of SAPO-34 – high-silicon incorporation in the presence of morpholine as template. J Chem Soc Faraday Trans 90:2291–2296.  https://doi.org/10.1039/ft9949002291 CrossRefGoogle Scholar
  62. Predescu L, Tezel FH, Stelmack P (1995) Adsorption of nitrogen and methane on natural clinoptilolite. In: Bonneviot L, Kaliaguin S (eds) Zeolites: A refined tool for designing catalytic sites. Elsevier, Amsterdam, pp 507–512.  https://doi.org/10.1016/S0167-2991(06)81931-2 CrossRefGoogle Scholar
  63. Ridha FN, Yang Y, Webley PA (2009) Adsorption characteristics of a fully exchanged potassium chabazite zeolite prepared from decomposition of zeolite Y. Microporous Mezoporous Mater 117:497–507.  https://doi.org/10.1016/j.micromeso.2008.07.034 CrossRefGoogle Scholar
  64. Sakızcı M (2015) Study of thermal and CH4 adsorption properties. Adsorption 21:391–399CrossRefGoogle Scholar
  65. Sakızcı M, Erdoğan-Alver B (2017) Effect of salt modification on thermal behavior, immersion heats and methane adsorption properties of chabazite tuff. J Therm Anal Calorim 129:441–449CrossRefGoogle Scholar
  66. Sakızcı M, Özgül-Tanrıverdi L (2015) Influence of acid and heavy metal cation exchange treatments on methane adsorption properties of mordenite. Turk J Chem 39:970–983CrossRefGoogle Scholar
  67. Salvestrini S, Sagliano P, Iovino P, Capasso S, Colella C (2010) Atrazine adsorption by acid activated zeolite-rich tuffs. Appl Clay Sci 49:330–335.  https://doi.org/10.1016/j.clay.2010.04.008 CrossRefGoogle Scholar
  68. Shang J, Li G, Singh R, Xiao P, Liu JZ, Webley PA (2010) Potassium chabazite: a potential nanocontainer for gas encapsulation. J Phys Chem C 114:22025–22031.  https://doi.org/10.1021/jp107456w CrossRefGoogle Scholar
  69. Shim SH, Navrotsky A, Gaffney TR, MacDougall JE (1999) Chabazite: energetics of hydration, enthalpy of formation, and effect of cations on stability. Am Mineral 84:1870–1882.  https://doi.org/10.2138/am-1999-11-1214 CrossRefGoogle Scholar
  70. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619.  https://doi.org/10.1002/9783527610044.hetcat0065 CrossRefGoogle Scholar
  71. Smykatz-Kloss W (1974) Differential thermal analysis, application and results in mineralogy. Springer Verlag Berlin Heidelberg, New York.  https://doi.org/10.1007/978-3-642-65951-5 CrossRefGoogle Scholar
  72. Stakebake JL (1984) Characterization of natural chabazite and 5A synthetic zeolites Part I. Thermal and outgassing properties. J Colloid Interface Sci 99:41–49.  https://doi.org/10.1016/0021-9797(84)90083-3 CrossRefGoogle Scholar
  73. Sun Y, Liu C, Su W, Zhou Y, Zhou L (2009) Principles of methane adsorption and natural gas storage. Adsorption 15:133–137CrossRefGoogle Scholar
  74. Valueva GP, Goryainov SV (1992) Chabazite during dehydration: thermochemical and Raman spectroscopy study. Russ Geol Geophys 33:68–75Google Scholar
  75. Yang RT (2003) Adsorbents: Fundamentals and Applications. Wiley, New JerseyCrossRefGoogle Scholar
  76. Zema M, Tarantino SC, Montagna G (2008) Hydration/dehydration and cation migration processes at high temperature in zeolite chabazite. Chem Mater 20:5876–5887.  https://doi.org/10.1021/cm800781t CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceEskişehir Technical UniversityEskişehirTurkey
  2. 2.Graduate School of ScienceAnadolu UniversityEskisehirTurkey

Personalised recommendations