Advertisement

Heterogeneous photo-Fenton process using iron-modified regional clays as catalysts: photonic and quantum efficiencies

  • María A. De León
  • Marta Sergio
  • Juan Bussi
  • Guadalupe B. Ortiz de la Plata
  • Orlando M. AlfanoEmail author
Research Article
  • 64 Downloads

Abstract

A regional raw clay was used as the starting material to prepare iron-pillared clays with different iron contents. The catalytic activity of these materials was tested in the heterogeneous photo-Fenton process, applied to the degradation of 2-chlorophenol chosen as the model pollutant. Different catalyst loads between 0.2 and 1.0 g L−1 and pH values between 3.0 and 7.0 were studied. The local volumetric rate of photon absorption (LVRPA) in the reactor was evaluated solving the radiative transfer equation applying the discrete ordinate method and using the optical properties of the catalyst suspensions. The photonic and quantum efficiencies of the 2-chlorophenol degradation depend on both the catalyst load and the iron content of the catalyst. The higher values for these parameters, 0.080 mol Einstein−1 and 0.152 mol Einstein−1, respectively, were obtained with 1.0 g L−1 of the catalyst with the higher iron content (17.6%). For the mineralization process, photonic and quantum efficiencies depend mainly on the catalyst load. Therefore, it was possible to employ a natural and cheap resource from the region to obtain pillared clay-based catalysts to degrade organic pollutants in water.

Keywords

Heterogeneous photo-Fenton Clay Fe-PILC 2-Chlorophenol Quantum efficiency Photonic efficiency 

Notes

Acknowledgements

The authors thank Mr. Antonio Negro for his invaluable assistance in the experimental work.

Funding information

This research was funded by Comisión Sectorial de Investigación Científica and Programa de Desarrollo de las Ciencias Básicas of Uruguay, and Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, and Agencia Nacional de Promoción Científíca y Tecnológica of Argentina.

References

  1. Allen AO, Hochanadel JA, Ghormley JA, Davis TW (1952) Decomposition of water and aqueous solutions under mixed fast neutron and gamma radiation. J Phys Chem 56:575–586CrossRefGoogle Scholar
  2. Ameta R, Kumar A, Punjabi PB, Ameta SC (2012) Advanced oxidation processes: basics and applications. In: Rao DG, Senthikumar R, Byrne JA, Feroz S (eds) Wastewater treatment: advanced processes and technologies. CRC Press, New York, pp 61–106CrossRefGoogle Scholar
  3. Ammar HB, Brahim MB, Abdelhédi R, Samet Y (2016) Enhanced degradation of metronidazole by sunlight via photo-Fenton process under gradual addition of hydrogen peroxide. J Mol Catal A Chem 420:222–227CrossRefGoogle Scholar
  4. Bel Hadjltaief H, Zina MB, Galvez ME, Da Costa P (2015) Photo-Fenton oxidation of phenol over a Cu-doped Fe-pillared clay. CR Chim 18:1161–1169Google Scholar
  5. Bel Hadjltaief H, Sdiri A, Ltaief W, Da Costa P, Gálvez ME, Zina MB (2018) Efficient removal of cadmium and 2-chlorophenol in aqueous system by natural clay: adsorption and photo-Fenton degradation processes. CR Chim 21:253–262Google Scholar
  6. Benzaquén TB, Isla MA, Alfano OM (2012) Quantum efficiencies of the photo-Fenton degradation of atrazine in water. Water Sci Technol 66:2209–2216CrossRefGoogle Scholar
  7. Benzaquén TB, Cuello NI, Alfano OM, Eimer GA (2017) Degradation of atrazine over a heterogeneous photo-Fenton process with iron modified MCM-41 materials. Catal Today 296:51–58CrossRefGoogle Scholar
  8. Braslavsky SE, Braun AM, Cassano AE, Emeline AV, Litter MI, Palmisano L, Parmon VN, Serpone N (2011) Glossary of terms used in photocatalysis and radiation catalysis (IUPAC recommendations 2011). Pure Appl Chem 83:931–1014CrossRefGoogle Scholar
  9. Carriazo JG, Guelou E, Barrault J, Tatibouët JM, Moreno S (2003) Catalytic wet peroxide oxidation of phenol over Al-Cu or Al-Fe modified clays. Appl Clay Sci 22:303–308CrossRefGoogle Scholar
  10. Comninellis C, Kapalka A, Malato S, Parson SA, Poulios I, Mantzavinos D (2008) Perspective advanced oxidation processes for water treatment: advances and trends for R&D. J Chem Technol Biotechnol 83:769–776CrossRefGoogle Scholar
  11. De León MA, Castiglioni J, Bussi J, Sergio M (2008) Catalytic activity of an iron pillared montmorillonite clay mineral in a heterogeneous photo-Fenton process. Catal Today 133-135:600–605CrossRefGoogle Scholar
  12. De León MA, Sergio M, Bussi J (2013) Iron-pillared clays as catalysts for dye removal by the heterogeneous photo-Fenton technique. React Kinet Mech Catal 110:101–117CrossRefGoogle Scholar
  13. De León MA, Sergio M, Bussi J, Ortiz de la Plata GB, Cassano AE, Alfano OM (2015) Optical properties of iron pillared clays as catalysts for heterogeneous photo-Fenton process. Ind Eng Chem Res 54:1228–1235CrossRefGoogle Scholar
  14. De León MA, Rodríguez M, Marchetti SG, Sapag K, Faccio R, Sergio M, Bussi J (2017) Raw montmorillonite modified with iron for photo-Fenton processes: influence of iron content on textural, structural and catalytic properties. J Environ Chem Eng 5:4742–4750CrossRefGoogle Scholar
  15. Diano W, Rubino R, Sergio M (1994) Al-pillared montmorillonite: preparation from concentrated slurries of homoionic Ca clay, characterization and thermal stability. Microporous Mesoporous Mater 2:179–184CrossRefGoogle Scholar
  16. Duderstadt JJ, Martin R (1979) Transport theory. Wiley, New YorkGoogle Scholar
  17. González-Olmos R, Martin MJ, Georgi A, Kopinke FD, Oller I, Malato S (2012) Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral Ph. Appl Catal B Environ 125:51–58CrossRefGoogle Scholar
  18. Herney-Ramirez J, Vicente MA, Madeira LM (2010) Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review. Appl Catal B Environ 98:10–26CrossRefGoogle Scholar
  19. Herrmann JM (2005) Heterogeneous photocatalysis: state of the art and present applications. Top Catal 34:49–65CrossRefGoogle Scholar
  20. Huston PL, Pignatello JJ (1999) Degradation of selected pesticide active ingredients and commercial formulations in water by the photo-assisted Fenton reaction. Water Res 33:1238–1246CrossRefGoogle Scholar
  21. Jusoh R, Jalil AA, Triwahyono S, Idris A, Noordin MY (2015) Photodegradation of 2-chlorophenol over colloidal α-FeOOH supported mesostructured silica nanoparticles: influence of a pore expander and reaction optimization. Sep Purif Technol 149:55–64CrossRefGoogle Scholar
  22. Karci A, Arslan-Alaton I, Olmez-Hanci T, Bekbölet M (2012) Transformation of 2,4-dichlorophenol by H2O2/UV-C, Fenton and photo-Fenton processes: oxidation products and toxicity evolution. J Photochem Photobiol A Chem 230:65–73CrossRefGoogle Scholar
  23. Lan H, Wang A, Liu R, Liu H, Qu J (2015) Heterogeneous photo-Fenton degradation of acid red B over Fe2O3 supported on activated carbon fiber. J Hazard Mater 285:167–172CrossRefGoogle Scholar
  24. Luo M, Bowden D, Brimblecombe P (2009) Catalytic property of Fe-Al pillared clay for Fenton oxidation of phenol by H2O2. Appl Catal B Environ 85:201–206CrossRefGoogle Scholar
  25. Martin del Campo E, Romero R, Roa G, Peralta-Reyes E, Espino-Valencia J, Natividad R (2014) Photo-Fenton oxidation of phenolic compounds catalyzed by iron-PILC. Fuel 138:149–155CrossRefGoogle Scholar
  26. Miralles-Cuevas S, Oller I, Agüera A, Sánchez Pérez JA, Malato S (2017) Strategies for reducing cost by using solar photo-Fenton treatment combined with nanofiltration to remove microcontaminants in real municipal effluents: toxicity and economic assessment. Chem Eng J 318:161–170CrossRefGoogle Scholar
  27. Murov SL, Carmichael I, Hug GL (1993) Handbook of photochemistry, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  28. Najjar W, Azabou S, Sayadi S, Ghorbel A (2007) Catalytic wet peroxide photo-oxidation of phenolic olive oil mill wastewater contaminants part I. Reactivity of tyrosol over (Al-Fe)PILC. Appl Catal B Environ 74:11–18CrossRefGoogle Scholar
  29. Neyens E, Baeyens J (2003) A review of classics Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater 98:33–50CrossRefGoogle Scholar
  30. Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation process and biological treatments for wastewater decontamination – a review. Sci Total Environ 409:4141–4166CrossRefGoogle Scholar
  31. Ortiz de la Plata GB, Alfano OM, Cassano AE (2010a) Decomposition of 2-chlorophenol employing goethite as Fenton catalyst II: reaction kinetics of the heterogeneous Fenton and photo-Fenton mechanisms. Appl Catal Environ 95:14–25CrossRefGoogle Scholar
  32. Ortiz de la Plata GB, Alfano OM, Cassano AE (2010b) Decomposition of 2-chlorophenol employing goethite as Fenton catalyst I: proposal of a feasible combined reaction scheme of heterogeneous and homogeneous reaction. Appl Catal Environ 95:1–13CrossRefGoogle Scholar
  33. Ortiz de la Plata GB, Alfano OM, Cassano AE (2012) 2-Chlorophenol degradation via photo-Fenton reaction employing zero valent iron nanoparticles. J Photochem Photobiol A Chem 233:53–59CrossRefGoogle Scholar
  34. Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84CrossRefGoogle Scholar
  35. Ruiz-Aguirre A, Polo-López MI, Fernández-Ibáñez P, Zaragoza G (2017) Integration of membrane distillation with solar photo-Fenton for purification of water contaminated with Bacillus sp. and Clostridium sp. spores. Sci Total Environ 595:110–118CrossRefGoogle Scholar
  36. Satuf ML, Brandi RJ, Cassano AE, Alfano OM (2005) Experimental method to evaluate the optical properties of aqueous titanium dioxide suspensions. Ind Eng Chem Res 44:6643–6649CrossRefGoogle Scholar
  37. Satuf ML, Brandi RJ, Cassano AE, Alfano OM (2007) Quantum efficiencies of 4-chlorophenol photocatalytic degradation and mineralization in a well-mixed slurry reactor. Ind Eng Chem Res 46:43–51CrossRefGoogle Scholar
  38. Silva AMT, Herney-Ramirez J, Söylemez U, Madeira LM (2012) A lumped kinetic model based on the Fermi’s equation applied to the catalytic wet hydrogen peroxide oxidation of Acid Orange. Appl Catal B Environ 121-122:10–19CrossRefGoogle Scholar
  39. Soltani T, Lee B (2017) Enhanced formation of sulfate radicals by methanol-doped BiFeO3 under visible light for improving photo-Fenton catalytic degradation of 2-chlorophenol. Chem Eng J 313:1258–1268CrossRefGoogle Scholar
  40. Sum OSN, Feng J, Hub X, Yue PL (2005) Photo-assisted Fenton mineralization of an azo-dye acid black 1 using a modified laponite clay-based Fe nanocomposite as a heterogeneous catalyst. Top Catal 33:233–242CrossRefGoogle Scholar
  41. Timofeeva MN, Khankhasaeva ST, Badmaeva SV, Chuvilin AL, Burgina EB, Ayupov AB, Panchenko VN, Kulikova AV (2005) Synthesis, characterization and catalytic application for wet oxidation of phenol of iron-containing clays. Appl Catal B Environ 59:243–248CrossRefGoogle Scholar
  42. Xu T, Liu Y, Ge F, Ouyang Y (2014) Simulated solar light photooxidation of azocarmine B over hydroxyl iron-aluminum pillared bentonite using hydrogen peroxide. Appl Clay Sci 100:35–42CrossRefGoogle Scholar
  43. Zhong X, Royer S, Zhang H, Huang Q, Xiang L, Valange S, Barrault J (2011) Mesoporous silica iron-doped as stable and efficient heterogeneous catalyst for the degradation of C.I. Acid Orange 7 using sono-photo-Fenton process. Sep Purif Technol 80:163–171CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • María A. De León
    • 1
  • Marta Sergio
    • 1
  • Juan Bussi
    • 1
  • Guadalupe B. Ortiz de la Plata
    • 2
  • Orlando M. Alfano
    • 2
    Email author
  1. 1.Laboratorio de Fisicoquímica de Superficies, DETEMA, Facultad de QuímicaUniversidad de la RepúblicaMontevideoUruguay
  2. 2.INTECUniversidad Nacional del Litoral-CONICETSanta FeArgentina

Personalised recommendations