Immobilization of Pb from mine sediments in metakaolin-based geomaterials

  • Emmanuel JousseinEmail author
  • Marilyne Soubrand
  • Grégoire Pascaud
  • Antoine Cogulet
  • Sylvie Rossignol
Research Article


The aims of this study correspond to (i) determine the feasibility of synthesize geomaterial from two main Pb-contaminated mining sediments (Sed1 and Sed2) without prior activation in substitution to metakaolin (MK), (ii) understand the mechanisms involved toward two types of silicate solution (Na and K one), and (iii) to evaluate the change in the Pb metallic element speciation and leaching after alkali treatment. The raw material as well as consolidated material were characterized by X-ray diffraction, infrared spectroscopy, and electron microscopy. The mechanical properties were evaluated, and the leaching behavior realized according to EN12457-2. The results evidence the limit of mining sediment incorporation by substitution near 50% whatever the sediments and the alkaline solution used. There is no difference in the mechanical properties up to 10% substitution then decrease with the increase of sediment content. The Pb-bearing phases are dissolved during alkaline treatment and redistributed in the geomaterial matrix. Finally, the leaching experiments clearly evidenced the possibility to stabilize Pb into MK-based geomaterial matrix up to 25–30% weight of mine waste.


Metakaolin-based geomaterial Mine waste Sediments Immobilization Pb 


Funding information

The authors would like to thank the Limousin Regional Council for their financial support.


  1. Abdul Rahim RH, Rahmiati T, Azizli KA, Man Z, Nuruddin MF, Ismail L (2014) Comparison of using NaOH and KOH activated fly ash-based geopolymer on the mechanical properties. Mater Sci Forum 803:179–184CrossRefGoogle Scholar
  2. Ahmari S, Zhang L (2013) Durability and leaching behavior of mine tailings-based geopolymer bricks. Constr Build Mater 44:743–750CrossRefGoogle Scholar
  3. Albitar M, Mohamed Ali MS, Visintin P, Drechsler M (2015) Effect of granulated lead smelter slag on strength of fly ash-based geopolymer concrete. Constr Build Mater 83:128–135CrossRefGoogle Scholar
  4. Al-Harahsheh MS, Al-Zboon K, Al-Makhadmeh L, Hararah M, Mahasneh M (2015) Fly ash based geopolymer for heavy metal removal: A case study on copper removal. J Environ Chem Eng 3:1669–1677CrossRefGoogle Scholar
  5. Álvarez-Ayuso E, Querol X, Plana F, Alastuey A, Moreno N, Izquierdo M, Font O, Moreno T, Diez S, Vázquez E, Barra M (2008) Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes. J Hazard Mater 154:175–183CrossRefGoogle Scholar
  6. Al-Zboon K, Al-Harahsheh MS, Hani FB (2011) Fly ash-based geopolymer for Pb removal from aqueous solution. J Hazard Mater 188:414–421CrossRefGoogle Scholar
  7. Al-Zboon K, Al-Smadi BM, Al-Khawaldh S (2016) Natural volcanic tuff-based geopolymer for Zn removal: adsorption isotherm, kinetic, and thermodynamic study. Water Air Soil Pollut:227–248Google Scholar
  8. Argane R, Benzaazoua M, Bouamrane A, Hakkou R (2015) Cement hydration and durability of low sulfide tailings-based renders: a case study in Moroccan constructions. Miner Eng 76:97–108CrossRefGoogle Scholar
  9. Autef A, Joussein E, Gasgnier G, Rossignol S (2012) Role of the silica source on the geopolymerization rate. J Non-Cryst Solids 358:2886–2893CrossRefGoogle Scholar
  10. Autef A, Joussein E, Gasgnier G, Pronier S, Sobrados I, Sanz J, Rossignol S (2013) Role of metakaolin dehydroxylation in geopolymer synthesis. Powder Technol 250:33–39CrossRefGoogle Scholar
  11. Bajnoczi EG, Palinko I, Kortvelyesi T, Balint S, Bako I, Sipos P, Persson I (2014) Speciation and the structure of lead(II) in hyper-alkaline aqueous solution. Dalton Trans 43:17539–17543CrossRefGoogle Scholar
  12. Bhattacharya A, Routh J, Jacks G, Bhattacharya P, Mörth M (2006) Environmental assessment of abandoned mine tailings in Adak, Västerbotten District (northern Sweden). Appl Geochem 21:1760–1780CrossRefGoogle Scholar
  13. Buchwald A, Zellmann H-D, Kaps C (2011) Condensation of aluminosilicate gels—model system for geopolymer binders. J Non-Cryst Solids 357:1376–1382CrossRefGoogle Scholar
  14. Chlique C, Lambertin D, Antonucci P, Frizon F, Deniard P (2015) XRD analysis of the role of cesium in sodium-based geopolymer. J Am Ceram Soc 98:1308–1313CrossRefGoogle Scholar
  15. Davidovits (2008) In: Davidovits J (ed) Geopolymer Chemistry and Applications, 2nd edn. Institut Géopolymère, Geopolymer Institute, Saint-Quentin, France, p 644Google Scholar
  16. Duxson P, Provis JL, Lukey GC, van Deventer JSJ (2007) The role of inorganic polymer technology in the development of “green concrete”. Cem Concr Res 37:1590–1597CrossRefGoogle Scholar
  17. El-Eswed B, Rushdi Y, Mazen A, Imad H, Samer Al-Gharabli, Fawwaz KI (2015) Stabilization/solidification of heavy metals in kaolin/zeolite based geopolymers. International Journal of Mineral Processing 137(34):42Google Scholar
  18. Gao XX, Autef A, Prud'Homme E, Michaud P, Joussein E, Rossignol S (2013) Synthesis of consolidated materials from alkaline solutions and metakaolin: Existence of domains in the Al-Si-K/O ternary diagram. Journal of Sol-Gel Science and Technology 65(2):220–229CrossRefGoogle Scholar
  19. Gharzouni A, Joussein E, Samet B, Baklouti S, Rossignol S (2015) Effect of the reactivity of alkaline solution and metakaolin on geopolymer formation. Journal of Non-Crystalline Solids 410:127–134CrossRefGoogle Scholar
  20. Gomes KC, Torres SM, De Barros S, Vasconcelos IF, Barbosa NP, (2011) Mechanical properties of geopolymers with iron rich precursors. Conference of the XIII International Congress on the Chemistry of Cement, Madrid. Cementing a sustainable future 1, pp 1–7Google Scholar
  21. Guo B, Pan D, Liu B, Volinsky AA, Fincan M, Du J, Zhang S (2017) Immobilization mechanism of Pb in fly ash-based geopolymer. Constr Build Mater 134:123–130CrossRefGoogle Scholar
  22. Huang DW, Sun RJ, Wei SS, Wang YY, Hu YZ, Ge Z (2014) Research on mechanical properties of cement mortar with iron tailings. Appl Mech Mater 651-653:169–172CrossRefGoogle Scholar
  23. Ismail I, Bernal SA, Provis JL, San Nicolas R, Hamdan S, van Deventer JSJ (2014) Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem Concr Compos 45:125–135CrossRefGoogle Scholar
  24. Izquierdo M, Querol X, Davidovits J, Antenucci D, Nugteren H, Fernández-Pereira C (2009) Coal fly ash-slag-based geopolymers: Microstructure and metal leaching. J Hazard Mater 166:561–566CrossRefGoogle Scholar
  25. Jang JG, Ahn YB, Souri H, Lee HK (2015) A novel eco-friendly porous concrete fabricated with coal ash and geopolymeric binder: heavy metal leaching characteristics and compressive strength. Constr Build Mater 79:173–181CrossRefGoogle Scholar
  26. Komnitsas K, Zaharaki D, Bartzas G (2013) Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers. Appl Clay Sci 73:103–109CrossRefGoogle Scholar
  27. Lee S, van Riessen A, Chon CM, Kang NH, Jou HT, Kim YJ (2016) Impact of activator type on the immobilization of lead in fly ash-based geopolymer. J Hazard Mater 305:59–66CrossRefGoogle Scholar
  28. Malviya and Chaudhary (2006) Factors affecting hazardous waste solidification/stabilization: A review. Journal of Hazardous Materials 137(1):267–276CrossRefGoogle Scholar
  29. Mehta A, Siddique R (2016) An overview of geopolymers derived from industrial by-products. Constr Build Mater 127:183–198CrossRefGoogle Scholar
  30. Muthmann R (2005) Waste generated and treated in Europe. In: Wim Kloek and Karin Jordan (eds) Office for Official Publications of the European Communities, 2003. European Communities, pp 2003Google Scholar
  31. Nikolić V, Komljenović M, Marjanović N, Baščarević Z, Petrović R (2014) Lead immobilization by geopolymers based on mechanically activated fly ash. Ceram Int 40:8479–8488CrossRefGoogle Scholar
  32. Nikolić V, Komljenović M, Džunuzović N, Miladinović Z (2018) The influence of Pb addition on the properties of fly ash-based geopolymers. J Hazard Mater 350:98–107CrossRefGoogle Scholar
  33. Ogundiran MB, Ogundele TB, Osibanjo O (2013) Lead, Cd, Cu and Zn levels in forage grasses, leachate and lactating cows reared around lead slag dumpsites in Nigeria. International Journal of Environmental Research 6(3):695–702Google Scholar
  34. Onisei S, Pontikes Y, Van Gerven T, Angelopoulos GN, Velea T, Predica V, Moldovan P (2012) Synthesis of inorganic polymers using fly ash and primary lead slag. J Hazard Mater 205-206:101–110CrossRefGoogle Scholar
  35. Pandey B, Kinrade SD, Catalan LJ (2012) Effects of carbonation on the leachability and compressive strength of cement-solidified and geopolymer-solidified synthetic metal wastes. J Environ Manage. 30:59–67CrossRefGoogle Scholar
  36. Pascaud G, Leveque T, Soubrand M, Boussen S, Joussein E, Dumat C (2014) Environmental and health risk assessment of Pb, Zn, As and Sb in soccer field soils and sediments from mine tailings: solid speciation and bioaccessibility. Environ Sci Pollut Res 21:4254–4264CrossRefGoogle Scholar
  37. Pascaud G, Boussen S, Soubrand M, Joussein E, Fondaneche P, Abdeljaouad S, Bril H (2015) Particulate transport and risk assessment of Cd, Pb and Zn in a Wadi contaminated by runoff from mining wastes in a carbonated semi-arid context. J Geochem Explor 152:27–36CrossRefGoogle Scholar
  38. Phair JW, Van Deventer JSJ (2001) Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers. Miner Eng 14:289–304CrossRefGoogle Scholar
  39. Provis JL, Bernal SA (2014) Geopolymers and related alkali-activated materials. Annu Rev Mater Res 44:299–327CrossRefGoogle Scholar
  40. Prud’homme E, Michaud P, Joussein E, Peyratout C, Smith A, Arrii-Clacens S, Clacens JM, Rossignol S (2010) Silica fume as porogent agent in geo-materials at low temperature. J Eur Ceram Soc 30:1641–1648CrossRefGoogle Scholar
  41. Prud'homme E, Joussein E, Rossignol S, Alkali-activated concrete binders as inorganic thermal insulator materials (2014) Handbook of Alkali-Activated Cements, Mortars and Concretes, pp 687–728Google Scholar
  42. Rao F, Liu Q (2015) Geopolymerization and its potential application in mine tailings consolidation: a review. Miner Process Extr Metall Rev 36:399–409CrossRefGoogle Scholar
  43. Romero A, González I, Martín JM, Vázquez MA, Ortiz P (2015) Risk assessment of particle dispersion and trace element contamination from mine-waste dumps. Environ Geochem Health 37:273–286CrossRefGoogle Scholar
  44. Ruiz-Santaquiteria C, Fernández-Jiménez A, Skibsted J, Palomo A (2013) Clay reactivity: production of alkali activated cements. Appl Clay Sci 73:11–16CrossRefGoogle Scholar
  45. Sperberga I, Sedmale G, Stinkulis G, Zeila K, Ulme D (2011) Comparative study of illite clay and illite-based geopolymer products. IOP Conf Ser Mater Sci Eng 18:222027CrossRefGoogle Scholar
  46. Tchakoute HK, Rüscher CH, Jobo JNYD, Kenne BBD, jopwouo DN (2015) Influence of gibbsite and quartz in kaolin on the properties of metakaolin-based geopolymer cements. Applied Clay ScienceVolume 107:188–194CrossRefGoogle Scholar
  47. Tenn N, Allou F, Petit C, Absi J, Rossignol S (2015) Formulation of new materials based on geopolymer binders and different road aggregates. Ceram Int 41:5812–5820CrossRefGoogle Scholar
  48. Tzanakos K, Mimilidou A, Anastasiadou K, Stratakis A (2014) Solidification/ stabilization of ash from medical waste incineration into geopolymers. Waste Manage. 34:1823–1828CrossRefGoogle Scholar
  49. Van Deventer JSJ, Provis J, Duxson P, Lukey GC (2007) Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. Journal of Hazardous Materials 139(3):506–513CrossRefGoogle Scholar
  50. Van Jaarsveld JGS, Van Deventer JSJ (1999) The effect of metal contaminants on the formation and properties of waste-based geopolymers. Cem Concr Res 29:1189–1200CrossRefGoogle Scholar
  51. Yunsheng Z, Wei S, Qianli C, Lin C (2007) Synthesis and heavy metal immobilization behaviors of slag based geopolymer. J Hazard Mater 143:206–213CrossRefGoogle Scholar
  52. Zhang J, Provis JL, Feng D, van Deventer JSJ (2008) Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+. J Hazard Mater 157:587–598CrossRefGoogle Scholar
  53. Zhang CL, Wang SC, Min FL (2014a) Fluidity and mechanical behavior of cement solidified lead-zinc mine tailings. Adv Mater Res 898:383–386CrossRefGoogle Scholar
  54. Zhang Z, Provis JL, Reid A, Wang H (2014b) Geopolymer foam concrete: an emerging material for sustainable construction. Constr Build Mater 56:113–127CrossRefGoogle Scholar
  55. Zheng L, Wang W, Gao X (2016) Solidification and immobilization of MSWI fly ash through aluminate geopolymerization: based on partial charge model analysis. Waste Manag 58:270–279CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Université de Limoges, PEREINE EA 7500 GRESE URA IRSTEALimogesFrance
  2. 2.Université de Limoges, IRCER UMR CNRS 7315LimogesFrance

Personalised recommendations