Advertisement

Effect of phosphate and silicate on selenite uptake and phloem-mediated transport in tomato (Solanum lycopersicum L.)

  • Mengke Wang
  • Wenxiao Yang
  • Fei Zhou
  • Zekun Du
  • Mingyue Xue
  • Tao Chen
  • Dongli LiangEmail author
Research Article
  • 28 Downloads

Abstract

The ambiguous mechanism that selenite seems to be absorbed by roots via phosphorus (P) and silicon (Si) transporters signifies P and Si may affect selenite uptake. However, the role of P and Si in phloem-mediated selenium (Se) transport within plant tissue is unknown. Therefore, in this work, tomato (Solanum lycopersicum L.) seedlings were exposed to selenite under different hydroponic conditions firstly. And then, split-root experiments were conducted. Results showed that Se uptake decreased as external pH increased. At pH 8, more selenite in the form of SeO32− was assimilated under P-deficient conditions than under P-normal conditions. Silicate inhibited Se uptake only at pH 3 (27.5% H2SeO3 +72.5% HSeO3). The results of split-root experiments showed that Se concentrations in seedlings increased under heterogeneously high P or Si. Selenium transport from shoots to roots immersed in solution without selenite was also enhanced. This study illustrated that the affinity of tomato roots to assimilate selenite species followed the order of H2SeO3 >HSeO3 >SeO32−. H2SeO3 was absorbed into roots via Si transporters, whereas HSeO3 and a portion of SeO32− were absorbed via low- and high-affinity P transporters, respectively. In addition, heterogeneously high P or Si concentrations in environmental media could enhance phloem-mediated Se redistribution.

Keywords

Heterogeneous nutrition High-affinity P transporter Hydroenselenite (HSeO3Phloem-based redistribution Selenic acid (H2SeO3Selenite ion (SeO32−

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (grant number 41571454, to D.L. Liang).

References

  1. Araie H, Sakamoto K, Suzuki I, Shiraiwa Y (2011) Characterization of the selenite uptake mechanism in the coccolithophore Emiliania huxleyi (Haptophyta). Plant Cell Physiol 52(7):1204–1210CrossRefGoogle Scholar
  2. Arvy MP (1982) Translocation of selenium in the bean plant (Phaseolus vulgaris) and the field bean (Vicia faba). Physiol Plant 56(3):299–302CrossRefGoogle Scholar
  3. Arvy MP (1993) Selenate and selenite uptake and translocation in bean plants (Phaseolus vulgaris). J Exp Bot 44(6):1083–1087CrossRefGoogle Scholar
  4. Asher CJ, Butler GW, Peterson PJ (1977) Selenium transport in root systems of tomato. J Exp Bot 28(2):279–291CrossRefGoogle Scholar
  5. Carter DL, Robbins CW, Brown MJ (1972) Effect of phosphorus fertilization on the selenium concentration in alfalfa (Medicago sativa). Soil Sci Soc Am J 36(4):624–628CrossRefGoogle Scholar
  6. Chen P, Wang H, Wang Y (1997) Effects of mixed application of Se and Si in rice (Oryza sativa L.) at young panicle developing stage. J Zhongkai Univ Agric Eng 10(1):24–28 (in Chinese)Google Scholar
  7. Chen Y, Liu M, Wang L, Lin W, Fan X, Cai K (2015) Proteomic characterization of silicon-mediated resistance against Ralstonia solanacearum in tomato. Plant Soil 387(1–2):425–440CrossRefGoogle Scholar
  8. Detmann KC, Araújo WL, Martins SC, Sanglard LM, Reis JV, Detmann E, Rodrigues F, Nunes-Nesi A, Fernie AR, DaMatta FM (2012) Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol 196(3):752–762CrossRefGoogle Scholar
  9. Dinh QT, Cui Z, Huang J, Tran T, Wang D, Yang W, Zhou F, Wang M, Yu D, Liang D (2018a) Selenium distribution in the Chinese environment and its relationship with human health: a review. Environ Int 112:294–309CrossRefGoogle Scholar
  10. Dinh QT, Wang M, Tran TAT, Zhou F, Wang D, Zhai H, Peng Q, Xue M, Du Z, Bañuelos GS, Lin ZQ, Liang D (2018b) Bioavailability of selenium in soil-plant system and a regulatory approach. Crit Rev Env Sci Tec: 1–75.  https://doi.org/10.1080/10643389.2018.1550987
  11. Drahoňovský J, Száková J, Mestek O, Tremlová J, Kaňa A, Najmanová J, Tlustoš P (2016) Selenium uptake, transformation and inter-element interactions by selected wildlife plant species after foliar selenate application. Environ Exp Bot 125:12–19CrossRefGoogle Scholar
  12. Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68CrossRefGoogle Scholar
  13. Filek M, Zembala M, Kornaś A, Walas S, Mrowiec H, Hartikainen H (2010) The uptake and translocation of macro-and microelements in rape and wheat seedlings as affected by selenium supply level. Plant Soil 336(1–2):303–312CrossRefGoogle Scholar
  14. Ghareeb H, Bozsó Z, Ott PG, Repenning C, Stahl F, Wydra K (2011) Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiol Mol Plant Pathol 75:83–89CrossRefGoogle Scholar
  15. Gharieb MM, Gadd GM (2004) The kinetics of 75[Se]-selenite uptake by Saccharomyces cerevisiae and the vacuolization response to high concentrations. Mycol Res 108(12):1415–1422CrossRefGoogle Scholar
  16. Guignardi Z, Schiavon M (2017) Biochemistry of plant selenium uptake and metabolism. In: Pilon-Smits EAH, Winkel LHE, Lin ZQ (eds) Selenium in plants. Springer International Publishing, Cham, pp 21–34CrossRefGoogle Scholar
  17. Guntzer F, Keller C, Meunier JD (2012) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32(1):201–213CrossRefGoogle Scholar
  18. Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162(1):9–24CrossRefGoogle Scholar
  19. Hopper JL, Parker DR (1999) Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant Soil 210(2):199–207CrossRefGoogle Scholar
  20. Iqbal T (2014) A split-root experiment shows that translocated phosphorus does not alleviate aluminium toxicity within plant tissue. Plant Soil 384(1–2):21–36CrossRefGoogle Scholar
  21. Lazard M, Blanquet S, Fisicaro P, Labarraque G, Plateau P (2010) Uptake of selenite by Saccharomyces cerevisiae involves the high and low affinity orthophosphate transporters. J Biol Chem 285(42):32029–32037CrossRefGoogle Scholar
  22. Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178(1):92–102CrossRefGoogle Scholar
  23. Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Li S, Wang X, Huang Z, Li J, Zhang C, Wang T, Zhang Y, Wang A, Zhang Y, Lin K, Li C, Xiong G, Xue Y, Mazzucato A, Causse M, Fei Z, Giovannoni JJ, Chetelat RT, Zamir D, Städler T, Li J, Ye Z, Du Y, Huang S (2014) Genomic analyses provide insights into the history of tomato breeding. Nat Genet 46:1220–1226CrossRefGoogle Scholar
  24. Liu Q, Wang DJ, Jiang XJ, Cao ZH (2004) Effects of the interactions between selenium and phosphorus on the growth and selenium accumulation in rice (Oryza sativa). Environ Geochem Health 26(2):325–330CrossRefGoogle Scholar
  25. Longchamp M, Angeli N, Castrec-Rouelle M (2013) Selenium uptake in Zea mays supplied with selenate or selenite under hydroponic conditions. Plant Soil 362(1–2):107–117CrossRefGoogle Scholar
  26. Luyckx M, Hausman JF, Lutts S, Guerriero G (2017) Silicon and plants: current knowledge and technological perspectives. Front Plant Sci 8.  https://doi.org/10.3389/fpls.2017.00411/full
  27. Ma JF, Yamaji N (2015) A cooperative system of silicon transport in plants. Trends Plant Sci 20(7):435–442CrossRefGoogle Scholar
  28. Marmiroli M, Pigoni V, Savo-Sardaro ML, Marmiroli N (2014) The effect of silicon on the uptake and translocation of arsenic in tomato (Solanum lycopersicum L.). Environ Exp Bot 99:9–17CrossRefGoogle Scholar
  29. Mengel K, Kirkby EA (2001) Principles of plant nutrition. Springer, DordrechtCrossRefGoogle Scholar
  30. Misson J, Thibaud MC, Bechtold N, Raghothama K, Nussaume L (2004) Transcriptional regulation and functional properties of Arabidopsis Pht1; 4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. Plant Mol Biol 55(5):727–741CrossRefGoogle Scholar
  31. Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M (2009) Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytol 181(4):950–959CrossRefGoogle Scholar
  32. Ngo LK, Pinch BM, Bennett WW, Teasdale PR, Jolley DF (2016) Assessing the uptake of arsenic and antimony from contaminated soil by radish (Raphanus sativus) using DGT and selective extractions. Environ Pollut 216:104–114Google Scholar
  33. Nussaume L, Kanno S, Javot H, Nakanishi TM, Thibaud MC (2011) Phosphate import in plants: focus on the PHT1 transporters. Front Plant Sci 8.  https://doi.org/10.3389/fpls.2017.00411
  34. Penalosa JM, Sarro MJ, Revilla E, Carpena R, Cadahia C (1989) Influence of phosphorus supply on tomato plant nutrition. J Plant Nutr 12(5):647–657CrossRefGoogle Scholar
  35. Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12(3):267–274CrossRefGoogle Scholar
  36. Rayman MP (2012) Selenium and human health. Lancet 379(9822):1256–1268CrossRefGoogle Scholar
  37. Schiavon M, Pilon-Smits EAH (2017) The fascinating facets of plant selenium accumulation-biochemistry, physiology, evolution and ecology. New Phytol 213(4):1582–1596CrossRefGoogle Scholar
  38. Shi Y, Zhang Y, Yao H, Wu J, Sun H, Gong H (2014) Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiol Biochem 78:27–36CrossRefGoogle Scholar
  39. Shinmachi F, Buchner P, Stroud JL, Parmar S, Zhao FJ, McGrath SP, Hawkesford MJ (2010) Influence of sulfur deficiency on the expression of specific sulfate transporters and the distribution of sulfur, selenium, and molybdenum in wheat. Plant Physiol 153(1):327–336CrossRefGoogle Scholar
  40. Shrift A, Ulrich JM (1969) Transport of selenate and selenite into Astragalus roots. Plant Physiol 44(6):893–896CrossRefGoogle Scholar
  41. Singh M (1979) Effect of selenium and phosphorus on the growth and chemical composition of raya (Brassica Juncea cos.). Plant Soil 51(4):485–490CrossRefGoogle Scholar
  42. Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389CrossRefGoogle Scholar
  43. Terry N, Zayed AM, De Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Biol 51(1):401–432CrossRefGoogle Scholar
  44. Trembath-Reichert E, Wilson JP, McGlynn SE, Fischer WW (2015) Four hundred million years of silica biomineralization in land plants. Proc Natl Acad Sci U S A 201500289.  https://doi.org/10.1073/pnas.1500289112
  45. Turgeon R, Wolf S (2009) Phloem transport: cellular pathways and molecular trafficking. Annu Rev Plant Biol 60:207–221CrossRefGoogle Scholar
  46. Van Hoewyk D (2013) A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. Ann Bot 112(6):965–972CrossRefGoogle Scholar
  47. Wang Y, Chen P (1996) Selenium absorption and distribution in rice (Oryza sativa L.) plant and effects of mixed application of Se and Si. J Plant Physiol 22(4):344–348 (in Chinese)Google Scholar
  48. Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46(8):4434–4441CrossRefGoogle Scholar
  49. Wang M, Peng Q, Zhou F, Yang W, Dinh QT, Liang D (2019) Uptake kinetics and interaction of selenium species in tomato (Solanum lycopersicum L.) seedlings. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-019-04182-6
  50. White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, Meacham MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B, Broadley MR (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot 55(404):1927–1937CrossRefGoogle Scholar
  51. White PJ, Bowen HC, Marshall B, Broadley MR (2007) Extraordinarily high leaf selenium to sulfur ratios define ‘Se-accumulator’ plants. Ann Bot 100(1):111–118CrossRefGoogle Scholar
  52. Xu GH, Chague V, Melamed-Bessudo C, Kapulnik Y, Jain A, Raghothama KG, Levy AA, Silber A (2007) Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression. J Exp Bot 58(10):2491–2501CrossRefGoogle Scholar
  53. Yu XZ, Gu JD (2007) Metabolic responses of weeping willows to selenate and selenite. Environ Sci Pollut Res Int 14(7):510–517CrossRefGoogle Scholar
  54. Yu XZ, Gu JD (2008) Differences in uptake and translocation of selenate and selenite by the weeping willow and hybrid willow. Environ Sci Pollut R 15(6):499–508CrossRefGoogle Scholar
  55. Zhang Y, Pan G, Chen J, Hu Q (2003) Uptake and transport of selenite and selenate by soybean seedlings of two genotypes. Plant Soil 253(2):437–443CrossRefGoogle Scholar
  56. Zhang L, Shi W, Wang X (2006) Difference in selenite absorption between high- and low-selenium rice cultivars and its mechanism. Plant Soil 282(1):183–193CrossRefGoogle Scholar
  57. Zhang L, Yu F, Shi W, Li Y, Miao Y (2010) Physiological characteristics of selenite uptake by maize roots in response to different pH levels. J Plant Nutr Soil Sci 173:417–422CrossRefGoogle Scholar
  58. Zhang L, Hu B, Li W, Che R, Deng K, Li H, Yu F, Ling H, Li Y, Chu C (2014) OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol 201(4):1183–1191CrossRefGoogle Scholar
  59. Zhang S, Wang Y, Pervaiz A, Kong L, He M (2018) Comparison of diffusive gradients in thin-films (DGT) and chemical extraction methods for predicting bioavailability of antimony and arsenic to maize. Geoderma 332:1–9Google Scholar
  60. Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF (2010) Involvement of silicon influx transporter OsNIP2; 1 in selenite uptake in rice. Plant Physiol 153(4):1871–1877CrossRefGoogle Scholar
  61. Zhu YG, Pilon-Smits EAH, Zhao FJ, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 14(8):436–442CrossRefGoogle Scholar
  62. Zimmermann MH, Milburn JA (2012) Transport in plants I: phloem transport. Springer Science & Business Media, HeidelbergGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mengke Wang
    • 1
  • Wenxiao Yang
    • 1
  • Fei Zhou
    • 1
  • Zekun Du
    • 1
  • Mingyue Xue
    • 1
  • Tao Chen
    • 1
  • Dongli Liang
    • 1
    • 2
    Email author
  1. 1.College of Natural Resources and EnvironmentNorthwest A&F UniversityYanglingChina
  2. 2.Key Laboratory of Plant Nutrition and the Agri-environment in Northwest ChinaMinistry of AgricultureYanglingChina

Personalised recommendations