Environmental Science and Pollution Research

, Volume 26, Issue 18, pp 18752–18765 | Cite as

Assessment of chemical and microbiological parameters on the Leite River Lithuania

  • Laima ČesonienėEmail author
  • Daiva Sileikiene
  • Midona Dapkiene
  • Algirdas Radzevicius
  • Kati Räsänen
Research Article


The most common source of pollution is wastewater that comes from the industrial, agricultural, and household sectors. The aim of this work is to evaluate the impact of a new innovative wastewater treatment technology on the water quality of the Leite River, Lithuania. The Leite River basin receives wastewater from the Leitgiriai agglomeration; it is then released into a channel, which is 73 m away from the river. During the implementation of the BSR Interreg project “Water emissions and their reduction in village communities in the Baltic Sea Region as pilots (VillageWater),” the ineffective Leitgiriai wastewater treatment plant (WWTP) was reconstructed in September and October of 2017. Water samples from Leite River were collected in 2010–2018 in three locations: near the Kulynai, Leitgiriai, and Sausgalviai villages in Lithuania. The results show that the wastewater treatment efficiency is statistically higher than that before the reconstruction of the WWTP. The treated wastewater (before and after reconstruction) is released from the Leitgiriai WWTP into the surface water (channel), which flows into the Leite River. The highest concentrations (according to all examined indicators) have been observed in the channel and in the Leite River 500 m after the release point before the reconstruction. All differences are statistically significant (p < 0.05). According to the 2018 values, the water quality of the Leite River did comply with the good ecological status/potential class indicators near the Leitgiriai village. After the Leitgiriai WWTP reconstruction, the wastewater treatment efficiency increased two times on average. Therefore, the Leite River water quality near Leitgiriai improved.


Wastewater treatment plant Chemical/nutrient BOD7 value Biogenic material Nitrate nitrogen (NO3-N) Ammonium nitrogen (NH4-N) Total nitrogen (NtTotal phosphorus (Pt


Funding information

This study was supported financially by the project “Water emissions and their reduction in village communities in Baltic Sea Region as pilots/VillageWaters” Project Number: #R014, 2016-2019, financed in part by the Interreg Baltic Sea Region program.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Approval of the Description of the Procedure for Assessing the Ecological Status of Surface Water Bodies (2007) Approval of the description of the procedure for assessing the ecological status of surface water bodies/Dėl paviršinių vandens telkinių ekologinės būklės vertinimo tvarkos aprašo patvirtinimo [interaktyvus]/ Order of the Minister of the Environment of the Republic of Lithuania: 12 04 2007 . No. D1–210. [interactive]. Accessed 29 Jan 2019
  2. Arnold JG, Srinisvan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment. Part I: model development. J Am Water Resour Assoc 34(1):73–89CrossRefGoogle Scholar
  3. Blaas H, Kroeze C (2016) Excessive nitrogen and phosphorus in European rivers: 2000–2050. Ecol Indic 67:328–337. CrossRefGoogle Scholar
  4. Bodik I., Ridderstplpe P (2008) Sustainable Sanitation in Central and Eastern Europe—addressing the needs of small and medium-size settlements. In: Global water partnership contribution to international year of sanitation 2008. Global Water Partnership, Central and Eastern EuropeGoogle Scholar
  5. Česonienė L, Dapkienė M, Šileikienė D, Rekašienė V (2017) Impact of wastewater treatment plant on water quality of the river Mažoji Sruoja, Plungė district. Environ Res Eng Manag 73:33–44. Google Scholar
  6. Chesterikoff A, Garban B, Billen G, Poulin M (1992) Inorganic nitrogen dynamics in the river seine downstream from Paris (France). Biogeochemistry 17:147–164. CrossRefGoogle Scholar
  7. Dauknys R (2007) Nitrogen and phosphorus removal from wastewater/Azoto ir Fosforo šalinimas iš nuotekų. Daktaro Disertacijos Santrauka, Vilnius Gediminas Technical UniversityGoogle Scholar
  8. Department of Water/Vandenų Departamentas (2010) Results of the department of waters 2010 and 2011–2012 priorities /Vandenų Departamento 2010 veiklos rezultatai ir 2011–2012 m. prioritetai [interaktyvus]. Department of Water/Vandenų Departamentas Prie LR AM. Accessed 14 Mar 2018
  9. Environmental Protection Agency (2013) Review of the protection problems of surface water bodies in the nemunas river basin districts [interactive]/Aplinkos apsaugos agentūra. Nemuno upių baseinų rajonų paviršinių vandens telkinių apsaugos problemų apžvalga [interaktyvus]. Environmental Protection Agency, MookkanurGoogle Scholar
  10. Fogelberg S (2003) Modelling nitrogen retention at the catchment scale. Report UPTEC W 03 019. Uppsala: Uppsala University. P. 1-51. French urban catchment. Water Res 85:432–442Google Scholar
  11. Grimvall A, Stålnacke P, Tonderski A (2000) Time scales of nutrient losses from land to sea—a European perspective. Ecol Eng 14:363–371. CrossRefGoogle Scholar
  12. HELCOM (2007) Helsinki convention on the protection of the marine environment of the Baltic Sea area. HELCOM Baltic Sea Action Plan. Helsinki ConventionGoogle Scholar
  13. Jaynes D, Colvin T, Karlen D, Cambardella C, Meek D (2001) Nitrate loss in subsurface drainage as affected by nitrogen fertilizer rate. J Environ Qual 30:1305–1314. CrossRefGoogle Scholar
  14. Kyllmar K, Bechmann M, Deelstra J, Iital A, Blicher-Mathiesen G, Jansons V, Koskiaho J, Povilaitis A (2014) Long-term monitoring of nutrient losses from agricultural catchments in the Nordic–Baltic region–a discussion of methods, uncertainties and future needs. Agric Ecosyst Environ 198:4–12. CrossRefGoogle Scholar
  15. Levitas E. (2002), Mažos nuotekų valyklos. Vandenų švaros asociacija. Small waste water treatment plants. Clean Water Association Kaunas, 8Google Scholar
  16. Liu J, Shen Z, Chen L (2018) Assessing how spatial variations of land use pattern affect water quality across a typical urbanized watershed in Beijing, China. Landsc Urban Plan 176:51–63. CrossRefGoogle Scholar
  17. Massoud MA, Tarhini A, Nasr JA (2009) Decentralized approaches to wastewater treatment and management: applicability in developing countries. J Environ Manag 90:652–659. CrossRefGoogle Scholar
  18. Mbuligwe SE (2005) Applicability of a septic tank/engineered wetland coupled system in the treatment and recycling of wastewater from a small community. Environ Manag 35:99–108. CrossRefGoogle Scholar
  19. Meisinger J, Delgado J (2002) Principles for managing nitrogen leaching. J Soil Water Conserv 57:485–498Google Scholar
  20. Organisation for Economic Co-operation and Development (2008) Environmental performance of agriculture in OECD countries since 1990, ISBN 9789264040922. OECD, ParisGoogle Scholar
  21. Povilaitis A, Šileika A, Deelstra J, Gaigalis K, Baigys G (2014) Nitrogen losses from small agricultural catchments in Lithuania. Agric Ecosyst Environ 198:54–64. CrossRefGoogle Scholar
  22. Ruminaitė R (2010) Investigation and assessment of the impact of anthropogenic activities on river runoff and water quality/Antropogeninės veiklos įtakos upių nuotėkiui ir vandens kokybei tyrimai ir vertinimas. Ph.D. thesis, Vilnius Gediminas Technical UniversityGoogle Scholar
  23. Seitzinger S, Mayorga E, Bouwman A, Kroeze C, Beusen A, Billen G, Van Drecht G, Dumont E, Fekete B, Garnier J (2010) Global river nutrient export: a scenario analysis of past and future trends. Glob Biogeochem Cycles 24.
  24. Sitonytė J, Kerienė I (2010) Pollution of the river Venta within the territory of Kuršėnai town. Environ Res Eng Manag 53:5–12Google Scholar
  25. Smol JP (2008) Pollution of lakes and rivers: a paleoenvironmental perspectives. Blackwell Publishing, HobokenGoogle Scholar
  26. Staniszewska M, Schnug E (2002) Status of organic agriculture in the countries of the Baltic Sea region. Landbauforschung Volkenrode 52:75–80Google Scholar
  27. United States Environmental Protection Agency (2012) Dissolved oxygen and biochemical oxygen demand in water monitoring and assessment. United States Environmental Protection Agency, Washington, DCGoogle Scholar
  28. Vaitiekūnienė J, Hansen FT (2005) National scale watershed modelling to assess and predict pollution trends in Lithuanian rivers. Environ Res Eng Manag 34:30–42Google Scholar
  29. Vanagas A (1981) Lietuvių hidronimų etimologinis žodynas/Lithuanian hydronyms etymological dictionary. Mokslas, VilniusGoogle Scholar
  30. Vrzel J, Vuković-Gačić B, Kolarević S, Gačić Z, Kračun-Kolarević M, Kostić J, Aborgiba M, Farnleitner A, Reischer G, Linke R (2016) Determination of the sources of nitrate and the microbiological sources of pollution in the Sava river basin. Sci Total Environ 573:1460–1471. CrossRefGoogle Scholar
  31. Wastewater Treatment Regulation/ Nuotekų tvarkymo reglamentas (2008) [interaktyvus]/Order of the Minister of the Environment of the Republic of Lithuania: 17 May 2006 . No. D1–236. [interactive]. Accessed 30 Jan 2019
  32. Wei HX, Xu CY, Ma LY, Jiang LN, Chai Y, Jia ZK (2011). Leaching of mineral nitrogen and available phosphorus during culture of bareroot Larix olgensis seedlings under native fertilizer management in Northeastern China. In: Proceedings of the “Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM), 2011 International Conference” Changsha (Hunan, China), 19–20 Feb 2011 Wiley-IEEE Press, IEEE Computer Society, Los Alamitos, CA, USA, pp 1247–1252Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Laima Česonienė
    • 1
    Email author
  • Daiva Sileikiene
    • 1
  • Midona Dapkiene
    • 2
  • Algirdas Radzevicius
    • 2
  • Kati Räsänen
    • 3
  1. 1.Institute of Environment and Ecology, Faculty of Forest and EcologyVytautas Magnus University, Agriculture AcademyKaunasLithuania
  2. 2.Institute of Hydraulic Engineering, Faculty of Water and Land ManagementVytautas Magnus University, Agriculture AcademyKaunasLithuania
  3. 3.Natural Resources InstituteHelsinkiFinland

Personalised recommendations