Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 11, pp 11496–11502 | Cite as

Comparison in the response of three European Gammarid species exposed to the growth regulator insecticide fenoxycarb

  • Hélène ArambourouEmail author
  • Emmanuelle Vulliet
  • Gaëlle Daniele
  • Patrice Noury
  • Nicolas Delorme
  • Khedidja Abbaci
  • Maxence Forcellini
  • Renaud Tutundjian
  • Carlos Barata
Short Research and Discussion Article
  • 50 Downloads

Abstract

Growth regulator insecticides with juvenoid activity can affect the development and reproduction of non-target organisms such as crustaceans. In this perspective, our previous studies revealed deleterious effects of the juvenoid fenoxycarb at 5 μg L−1 on the embryogenesis and at 50 μg L−1 on the reproductive behavior of the amphipod Gammarus fossarum. In the present study, to determine whether data generated with one amphipod species can be extended to other gammarid species, we tested the effects of a 5 μg L−1 fenoxycarb exposure on three European amphipod species: G. fossarum, Gammarus roeseli, and Echinogammarus longisetosus. We exposed individually 60 freshly fertilized females to fenoxycarb throughout the entire oogenesis/embryogenesis cycle (i.e., 19 days). In newborn individuals from exposed embryos, we measured both pigmentation and lipid reserve impairments while in exposed females, we observed reproductive behavior. At 5 μg L−1 fenoxycarb, reproductive behavior was only altered in G. fossarum. This study demonstrates the variability of the toxic response among the three gammaridae species, underlining the need for acquiring data with a broad phylogenetic representation to better predict toxic effects on freshwater ecosystems.

Keywords

Gammarid Juvenoid insecticide Reproductive success Embryogenesis Species-dependent response 

Notes

Funding information

This research was financially supported by the French Ec2co program.

Supplementary material

11356_2019_4631_MOESM1_ESM.docx (144 kb)
ESM 1 (DOCX 144 kb)

References

  1. Alonso A, De Lange HJK, Peeters ETHM (2010) Contrasting sensitivities to toxicants of the freshwater amphipods Gammarus pulex and G. fossarum. Ecotoxicology 19:133–140CrossRefGoogle Scholar
  2. Arambourou H, Chaumot A, Vulliet E, Daniele G, Delorme N, Abbaci K, Debat V (2017) Phenotypic defects in newborn Gammarus fossarum (Amphipoda) following embryonic exposure to fenoxycarb. Ecotoxicol Environ Saf 144:193–199.  https://doi.org/10.1016/j.ecoenv.2017.06.017 CrossRefGoogle Scholar
  3. Arambourou H, Fuertes I, Vulliet E, Daniele G, Noury P, Delorme N, Abbaci K, Barata C (2018) Fenoxycarb exposure disrupted the reproductive success of the amphipod Gammarus fossarum with limited effects on the lipid profile. PLoS One 13(4):e0196461CrossRefGoogle Scholar
  4. Barata C, Baird DJ, Soares AMVM (2002) Determining genetic variability in the distribution of sensitivities to toxic stress among and within field population of Daphnia magna. Environ Sci Technol 36:3045–3049CrossRefGoogle Scholar
  5. Boets P, Lock K, Goethals PLM, Janssen CR, De Schamphelaere KMC (2012) A comparison of the short-term toxicity of cadmium to indigenous and alien gammarid species. Ecotoxicology 21:1135–1144CrossRefGoogle Scholar
  6. Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  7. Dhadialla T, Carlson G, Le D (1998) New insecticides with ecdysteroidal and juvenile hormone activity. Annu Rev Entomol 43:545–569.  https://doi.org/10.1146/annurev.ento.43.1.545 CrossRefGoogle Scholar
  8. EFSA (2010) Conclusion on the peer review of the pesticide risk assessment of the active substance fenoxycarb. EFSA J 8:1779Google Scholar
  9. Feckler A, Thielsch A, Schwenk K, Schulz R, Bundschuh M (2012) Differences in the sensitivity among cryptic lineages of the Gammarus fossarum complex. Sci Total Environ 439:158–164CrossRefGoogle Scholar
  10. Feckler A, Zubrod JP, Thielsch A, Schwenk K, Schulz R, Bundschuh M (2014) Cryptic species diversity: an overlooked factor in environmental management? J Appl Ecol 51:958–967CrossRefGoogle Scholar
  11. Feiner M, Beggel S, Geist J (2015) Increased RO concentrate toxicity following application of antiscalants—acute toxicity tests with the amphipods Gammarus pulex and Gammarus roeseli. Environ Pollut 197:309–312CrossRefGoogle Scholar
  12. Geffard O, Xuereb B, Chaumot A, Geffard A, Abbaci K, Charmantier G, Garric J, Charmantier-Daures M (2010) Ovarian cycle and embryonic development in Gammarus fossarum: application for reproductive toxicity assessment. Environ Toxicol Chem 29:2249–2259.  https://doi.org/10.1002/etc.268 CrossRefGoogle Scholar
  13. Grabowski M, Bacela K, Konopacka A (2007) How to be an invasive gammarid (Amphipoda: Gammaroidea)—comparison of life history traits. Hydrobiologia 590:75–84CrossRefGoogle Scholar
  14. Jordão R, Garreta E, Campos B, Lemos MFL, Soares AMVM, Tauler R, Barata C (2016) Compounds altering fat storage in Daphnia magna. Sci Total Environ 545–546:127–136.  https://doi.org/10.1016/j.scitotenv.2015.12.097 CrossRefGoogle Scholar
  15. Jubeaux G, Simon R, Salvador A, Quéau H, Chaumot A, Geffard O (2012) Vitellogenin-like proteins in the freshwater amphipod Gammarus fossarum (Koch, 1835): functional characterization throughout reproductive process, potential for use as an indicator of oocyte quality and endocrine disruption biomarker in males. Aquat Toxicol 112–113:72–82.  https://doi.org/10.1016/j.aquatox.2012.01.011 CrossRefGoogle Scholar
  16. Klüttgen B, Dülmer U, Engels M, Ratte HT (1994) ADaM, an artificial freshwater for the culture of zooplankton. Water Res 28:743–746.  https://doi.org/10.1016/0043-1354(94)90157-0 CrossRefGoogle Scholar
  17. Loayza-Muro RA, Marticorena-Ruiz JK, Palomino EJ, Merritt C, De Baat ML, Gemert MV, Verweij RA, Kraak MHS, Admiraal W (2013) Persistence of chironomids in metal polluted Andean high altitude streams: does melanin play a role? Environ Sci Technol 47:601–607.  https://doi.org/10.1021/es302779b CrossRefGoogle Scholar
  18. McKenney C (2005) The influence of insect juvenile hormone agonists on metamorphosis and reproduction in estuarine crustaceans. Integr Comp Biol 45:97–105CrossRefGoogle Scholar
  19. Miyakawa H, Toyota K, Hirakawa I, Ogino Y, Miyagawa S, Oda S, Tatarazako N, Miura T, Colbourne JK, Iguchi T (2013) A mutation in the receptor Methoprene-tolerant alters juvenile hormone response in insects and crustaceans. Nat Commun 4:1856.  https://doi.org/10.1038/ncomms2868 CrossRefGoogle Scholar
  20. Nadukooru N, Yallapragada PR (2015) Carotenoid as a sensitive indicator of sub lethal cadmium toxicity in Penaeus monodon post larvae. Ecotoxicology 24:339–345.  https://doi.org/10.1007/s10646-014-1382-8 CrossRefGoogle Scholar
  21. Nates S, McKenney C (2000) Growth, lipid class and fatty acid composition in juvenile mud crabs (Rhithropanopeus harrisii) following larval exposure to Fenoxycarb®, insect juvenile hormone analog. Comp Biochem Physiol Part C 127:317–325Google Scholar
  22. Nauen R, Bretschneider T (2002) New mode of action of insecticides. Pestic Outlook 13:241–245CrossRefGoogle Scholar
  23. Obin MS, Glancey BM, Banks WA, Vander Meer RK (1988) Queen pheromone production and its physiological correlates in fire ant queens (Hymenoptera: Formicidae) treated with fenoxycarb. Ann Entomol Soc Am 81:808–815.  https://doi.org/10.1093/aesa/81.5.808 CrossRefGoogle Scholar
  24. R development Core Team (2017) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. Available: http://www.R-project.org. Accessed 15 Sept 2017
  25. Sroda S, Cossu-Leguille C (2011) Effects of sublethal copper exposure on two gammarid species: which is the best competitor? Ecotoxicology 20:264–273CrossRefGoogle Scholar
  26. Tatarazako N, Oda S (2007) The water flea Daphnia magna (Crustacea, Cladocera) as a test species for screening and evaluation of chemicals with endocrine disrupting effects on crustaceans. Ecotoxicology 16:197–203CrossRefGoogle Scholar
  27. Xuereb B, Lefèvre E, Garric J, Geffard O (2009) Acetylcholinesterase activity in Gammarus fossarum (Crustacea Amphipoda): linking AChE inhibition and behavioural alteration. Aquat Toxicol 94:114–122.  https://doi.org/10.1016/j.aquatox.2009.06.010 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hélène Arambourou
    • 1
    Email author
  • Emmanuelle Vulliet
    • 2
  • Gaëlle Daniele
    • 2
  • Patrice Noury
    • 1
  • Nicolas Delorme
    • 1
  • Khedidja Abbaci
    • 1
  • Maxence Forcellini
    • 1
  • Renaud Tutundjian
    • 1
  • Carlos Barata
    • 3
  1. 1.Riverly Research UnitIrstea LyonVilleurbanneFrance
  2. 2.Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de LyonInstitut des Sciences Analytiques, UMR 5280VilleurbanneFrance
  3. 3.Department of Environmental Chemistry, Spanish Research Council (CSIC)Institute of Environmental Assessment and Water Research (IDAEA)BarcelonaSpain

Personalised recommendations