Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 12, pp 12379–12398 | Cite as

Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal

  • Jelena D. RusmirovićEmail author
  • Nina Obradović
  • Jovana Perendija
  • Ana Umićević
  • Ana Kapidžić
  • Branislav Vlahović
  • Vera Pavlović
  • Aleksandar D. Marinković
  • Vladimir B. Pavlović
Research Article
  • 107 Downloads

Abstract

Iron oxide, in the form of magnetite (MG)–functionalized porous wollastonite (WL), was used as an adsorbent for heavy metal ions (cadmium and nickel) and oxyanions (chromate and phosphate) removal from water. The porous WL was synthesized from calcium carbonate and siloxane by controlled sintering process using low molecular weight submicrosized poly(methyl methacrylate) as a pore-forming agent. The precipitation of MG nanoparticles was carried out directly by a polyol-medium solvothermal method or via branched amino/carboxylic acid cross-linker by solvent/nonsolvent method producing WL/MG and WL-γ-APS/MG adsorbents, respectively. The structure/properties of MG functionalized WL was confirmed by applying FTIR, Raman, XRD, Mössbauer, and SEM analysis. Higher adsorption capacities of 73.126, 66.144, 64.168, and 63.456 mg g−1 for WL-γ-APS/MG in relation to WL/MG of 55.450, 52.019, 48.132, and 47.382 mg g−1 for Cd2+, Ni2+, phosphate, and chromate, respectively, were obtained using nonlinear Langmuir model fitting. Adsorption phenomena were analyzed using monolayer statistical physics model for single adsorption with one energy. Kinetic study showed exceptionally higher pseudo-second-order rate constants for WL-γ-APS/MG, e.g., 1.17–13.4 times, with respect to WL/MG indicating importance of both WL surface modification and controllable precipitation of MG on WL-γ-APS.

Keywords

Calcium metasilicate ceramic Magnetite functionalization Solvent/nonsolvent method Polyol-thermal method Heavy metals Adsorption; Fe3O4 

Notes

Acknowledgement

The authors are grateful to Dr. Miodrag Mitrić for XRD measurements.

Funding information

This research was performed within the projects OI 172057, OI 171001, and 176018, funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia, and bilateral cooperation between Serbia and France, No. 4510339/2016/09/03 “Inteligent eco-nanomaterials and nanocomposites.” The work was supported in part by the National Science Foundation, North Carolina State University (Project No. HRD-1345219 and DMR-1523617) and the National Aeronautics and Space Administration project (NASA: NNX09AV07A).

Supplementary material

11356_2019_4625_MOESM1_ESM.docx (917 kb)
ESM 1 (DOCX 917 kb)

References

  1. Abdel-Halim ES, Al-Deyab SS (2011) Removal of heavy metals from their aqueous solutions through adsorption onto natural polymers. Carbohydr Polym 84:454–458.  https://doi.org/10.1016/j.carbpol.2010.12.001 CrossRefGoogle Scholar
  2. Ahmed MA, Ali SM, El-Dek SI, Galal A (2013) Magnetite–hematite nanoparticles prepared by green methods for heavy metal ions removal from water. Mater Sci Eng B 178:744–751.  https://doi.org/10.1016/j.mseb.2013.03.011 CrossRefGoogle Scholar
  3. Bizerea Spiridon O, Preda E, Botez A, Pitulice L (2014) Phenol removal from wastewater by adsorption on zeolitic composite. Environ Sci Pollut Res 20:6367–6381.  https://doi.org/10.1007/s11356-013-1625-x
  4. Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32:759–769CrossRefGoogle Scholar
  5. Brand R (2008) WinNormos Mössbauer fitting programGoogle Scholar
  6. Budimirović D, Veličković ZS, Djokić VR, Milosavljević M, Markovski J, Lević S, Marinković AD (2017) Efficient As(V) removal by α-FeOOH and α-FeOOH/ α-MnO2 embedded PEG-6-arm functionalized multiwall carbon nanotubes. Chem Eng Res Des 119:75–86.  https://doi.org/10.1016/j.cherd.2017.01.010 CrossRefGoogle Scholar
  7. Buzatu A, Buzgar N (2010) The Raman study of single-chain silicates. Analele Stiint ale Univ “Al I Cuza” din Iasi , Geol 56:107–125.  https://doi.org/10.13140/2.1.4600.9288 Google Scholar
  8. Capretta A, Maharajh RB, Bell RA (1995) Synthesis and characterization of cyclomaltoheptaose-based metal chelants as probes for intestinal permeability. Carbohydr Res 267:49–63.  https://doi.org/10.1016/0008-6215(94)00289-R CrossRefGoogle Scholar
  9. Carvalho MD, Henriques F, Ferreira LP, Godinho M, Cruz MM (2013) Iron oxide nanoparticles: the influence of synthesis method and size on composition and magnetic properties. J Solid State Chem 201:144–152.  https://doi.org/10.1016/j.jssc.2013.02.024 CrossRefGoogle Scholar
  10. Chen Q, Hills CD, Yuan M, Liu H, Tyrer M (2008) Characterization of carbonated tricalcium silicate and its sorption capacity for heavy metals: a micron-scale composite adsorbent of active silicate gel and calcite. J Hazard Mater 153:775–783.  https://doi.org/10.1016/j.jhazmat.2007.09.023 CrossRefGoogle Scholar
  11. da Costa GM, De Grave E, Vandenberghe RE (1998) Mössbauer studies of magnetite and Al-substituted maghemites. Hyperfine Interact 117:207–243.  https://doi.org/10.1023/A:1012691209853
  12. D’Halluin M, Rull-Barrull J, Bretel G et al (2017) Chemically modified cellulose filter paper for heavy metal remediation in water. ACS Sustain Chem Eng 5:1965–1973.  https://doi.org/10.1021/acssuschemeng.6b02768 CrossRefGoogle Scholar
  13. da Costa GM (1995) Influence of nonstoichiometry and the presence of maghemite on the Mössbauer spectrum of magnetite†. Clay Clay Miner 43:656–668.  https://doi.org/10.1346/CCMN.1995.0430602 CrossRefGoogle Scholar
  14. de Faria DLA, Venâncio Silva S, de Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878.  https://doi.org/10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B CrossRefGoogle Scholar
  15. Dézsi I, Fetzer C, Gombkötő Á, Szűcs I, Gubicza J, Ungár T (2008) Phase transition in nanomagnetite. J Appl Phys 103:104312.  https://doi.org/10.1063/1.2937252 CrossRefGoogle Scholar
  16. Ding H, Lu SC, Du GX (2011) Surface modification of wollastonite by the mechano-activated method and its properties. Int J Miner Metall Mater 18:83–88.  https://doi.org/10.1007/s12613-011-0404-2 CrossRefGoogle Scholar
  17. Dowty E, Lindsley DH (1973) Mössbauer spectra of synthetic Ca-Fe pyroxenoids and lunar pyroxferroite. Contrib Mineral Petrol 48:229–232.  https://doi.org/10.1007/BF00383358 CrossRefGoogle Scholar
  18. Drah A, Tomić NZ, Veličić Z, Marinković AD, Radovanović Ž, Veličković Z, Jančić-Heinemann R (2017) Highly ordered macroporous γ -alumina prepared by a modified sol-gel method with a PMMA microsphere template for enhanced Pb2+, Ni2+ and Cd2+ removal. Ceram Int 43:13817–13827.  https://doi.org/10.1016/j.ceramint.2017.07.102 CrossRefGoogle Scholar
  19. Dyar MD, Agresti DG, Schaefer MW, Grant CA, Sklute EC (2006) Mössbauer spectroscopy of Earth and planetary materials. Annu Rev Earth Planet Sci 34:83–125.  https://doi.org/10.1146/annurev.earth.34.031405.125049 CrossRefGoogle Scholar
  20. Ebbert C, Grundmeier G, Buitkamp N, Kröger A, Messerschmidt F, Thissen P (2014) Toward a microscopic understanding of the calcium–silicate–hydrates/water interface. Appl Surf Sci 290:207–214.  https://doi.org/10.1016/j.apsusc.2013.11.045 CrossRefGoogle Scholar
  21. EPA (2014) United State Environmental Protection AgencyGoogle Scholar
  22. Fock J, Bogart LK, González-Alonso D, Espeso JI, Hansen MF, Varón M, Frandsen C, Pankhurst QA (2017) On the ‘centre of gravity’ method for measuring the composition of magnetite/maghemite mixtures, or the stoichiometry of magnetite-maghemite solid solutions, via 57Fe Mössbauer spectroscopy. J Phys D Appl Phys 50:265005.  https://doi.org/10.1088/1361-6463/aa73fa CrossRefGoogle Scholar
  23. Gorski CA, Scherer MM (2010) Determination of nanoparticulate magnetite stoichiometry by Mössbauer spectroscopy, acidic dissolution, and powder X-ray diffraction: a critical review. Am Mineral 95:1017–1026.  https://doi.org/10.2138/am.2010.3435 CrossRefGoogle Scholar
  24. Gustafsson JP (2011) Visual MINTEQ. 3.0, betaGoogle Scholar
  25. Han Q, Chen L, Li W, Zhou Z, Fang Z, Xu Z, Qian X (2018) Self-assembled three-dimensional double network graphene oxide/polyacrylic acid hybrid aerogel for removal of Cu2+ from aqueous solution. Environ Sci Pollut Res 25:34438–34447.  https://doi.org/10.1007/s11356-018-3409-9 CrossRefGoogle Scholar
  26. Haring MM (1942) The theory of rate processes (Glasstone, Samuel; Laidler, Keith J.; Eyring, Henry). J Chem Educ 19:249 19:249.  https://doi.org/10.1021/ed019p249.1 CrossRefGoogle Scholar
  27. Huang X, Zhan X, Wen C, Xu F, Luo L (2017) Amino-functionalized magnetic bacterial cellulose/activated carbon composite for Pb2+ and methyl orange sorption from aqueous solution. J Mater Sci Technol 34:855–863.  https://doi.org/10.1016/j.jmst.2017.03.013 CrossRefGoogle Scholar
  28. Iannazzo D, Pistone A, Ziccarelli I, Espro C, Galvagno S, Giofré SV, Romeo R, Cicero N, Bua GD, Lanza G, Legnani L, Chiacchio MA (2017) Removal of heavy metal ions from wastewaters using dendrimer-functionalized multi-walled carbon nanotubes. Environ Sci Pollut Res 24:14735–14747.  https://doi.org/10.1007/s11356-017-9086-2 CrossRefGoogle Scholar
  29. Johnston CP, Chrysochoou M (2014) Mechanisms of chromate adsorption on hematite. Geochim Cosmochim Acta 138:146–175CrossRefGoogle Scholar
  30. Joos A, Rümenapp C, Wagner FE, Gleich B (2016) Characterisation of iron oxide nanoparticles by Mössbauer spectroscopy at ambient temperature. J Magn Magn Mater 399:123–129.  https://doi.org/10.1016/j.jmmm.2015.09.060 CrossRefGoogle Scholar
  31. Kalantari K, Ahmad MB, Masoumi HRF, Shameli K, Basri M, Khandanlou R (2014) Rapid adsorption of heavy metals by Fe3O4/talc nanocomposite and optimization study using response surface methodology. Int J Mol Sci 15:12913–12927.  https://doi.org/10.3390/ijms150712913 CrossRefGoogle Scholar
  32. Kalska-Szostko B, Satuła D, Olszewski W (2015) Mössbauer spectroscopy studies of the magnetic properties of ferrite nanoparticles. Curr Appl Phys 15:226–231.  https://doi.org/10.1016/j.cap.2014.12.011 CrossRefGoogle Scholar
  33. Karnib M, Kabbani A, Holail H, Olama Z (2014) Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia 50:113–120.  https://doi.org/10.1016/j.egypro.2014.06.014 CrossRefGoogle Scholar
  34. Karthikeyan T, Rajgopal S, Miranda LR (2005) Chromium(VI) adsorption from aqueous solution by Hevea brasiliensis sawdust activated carbon. J Hazard Mater 124:192–199.  https://doi.org/10.1016/j.jhazmat.2005.05.003 CrossRefGoogle Scholar
  35. Khalil MI (2015) Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors. Arab J Chem 8:279–284.  https://doi.org/10.1016/j.arabjc.2015.02.008 CrossRefGoogle Scholar
  36. Kumari M, Pittman CU, Mohan D (2015) Heavy metals [chromium(VI) and lead(II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres. J Colloid Interface Sci 442:120–132.  https://doi.org/10.1016/j.jcis.2014.09.012 CrossRefGoogle Scholar
  37. Kündig W, Steven Hargrove R (1969) Electron hopping in magnetite. Solid State Commun 7:223–227.  https://doi.org/10.1016/0038-1098(69)90729-7 CrossRefGoogle Scholar
  38. Li Y-S, Church JS, Woodhead AL (2012) Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications. J Magn Magn Mater 324:1543–1550.  https://doi.org/10.1016/j.jmmm.2011.11.065 CrossRefGoogle Scholar
  39. Lin S, Lian C, Xu M, Zhang W, Liu L, Lin K (2017) Study on competitive adsorption mechanism among oxyacid-type heavy metals in co-existing system: removal of aqueous As(V), Cr(III) and As (III) using magnetic iron oxide nanoparticles (MIONPs) as adsorbents. Appl Surf Sci 422:675–681.  https://doi.org/10.1016/j.apsusc.2017.06.079 CrossRefGoogle Scholar
  40. Liu C-H, Chuang Y-H, Chen T-Y, Tian Y, Li H, Wang MK, Zhang W (2015) Mechanism of arsenic adsorption on magnetite nanoparticles from water: thermodynamic and spectroscopic studies. Environ Sci Technol 49:7726–7734.  https://doi.org/10.1021/acs.est.5b00381 CrossRefGoogle Scholar
  41. March J (1985) Advanced organic chemistry: reaction, mechanisms and structure. Wiley, New YorkGoogle Scholar
  42. Markovski JS, Đokić V, Milosavljević M, Mitrić M, Perić-Grujić AA, Onjia AE, Marinković AD (2014a) Ultrasonic assisted arsenate adsorption on solvothermally synthesized calcite modified by goethite, α-MnO2 and goethite/α-MnO2. Ultrason Sonochem 21:790–801.  https://doi.org/10.1016/j.ultsonch.2013.10.006 CrossRefGoogle Scholar
  43. Markovski JS, Marković DD, Dokić VR et al (2014b) Arsenate adsorption on waste eggshell modified by goethite, α-MnO2 and goethite/α-MnO2. Chem Eng J 237:430–442.  https://doi.org/10.1016/j.cej.2013.10.031 CrossRefGoogle Scholar
  44. Martin S, Griswold W (2009) Human health effects of heavy metals. Cent Hazard Subst Res Enviromental Sci Technol Briefs Citizens:1–6Google Scholar
  45. Mezenner NY, Bensmaili A (2009) Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste. Chem Eng J 147:87–96.  https://doi.org/10.1016/j.cej.2008.06.024 CrossRefGoogle Scholar
  46. Murad E, Wagner U (1998) Clays and clay minerals: the firing process. Hyperfine Interact 117:337–356.  https://doi.org/10.1023/A:1012683008035 CrossRefGoogle Scholar
  47. Obradović N, Filipović S, Marković S, Mitrić M, Rusmirović J, Marinković A, Antić V, Pavlović V (2017a) Influence of different pore-forming agents on wollastonite microstructures and adsorption capacities. Ceram Int 43:7461–7468.  https://doi.org/10.1016/j.ceramint.2017.03.021 CrossRefGoogle Scholar
  48. Obradović N, Filipović S, Rusmirović J et al (2017b) Formation of porous wollastonite-based ceramics after sintering with yeast as the pore-forming agent. Sci Sinter 49:49–246.  https://doi.org/10.2298/SOS1703235O Google Scholar
  49. Oshtrakh MI, Ushakov MV, Šepelák V, Semionkin VA, Morais PC (2016) Study of iron oxide nanoparticles using Mössbauer spectroscopy with a high velocity resolution. Spectrochim Acta Part A Mol Biomol Spectrosc 152:666–679.  https://doi.org/10.1016/j.saa.2015.06.017 CrossRefGoogle Scholar
  50. Osticioli I, Mendes NFC, Nevin A, Gil FPSC, Becucci M, Castellucci E (2009) Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy. Spectrochim Acta Part A Mol Biomol Spectrosc 73:525–531.  https://doi.org/10.1016/j.saa.2008.11.028 CrossRefGoogle Scholar
  51. Ovsyannikov SV, Shchennikov VV, Shvetsova MA, Dubrovinsky LS, Polian A (2010) Tuning of the stoichiometry of of Fe1−xO wüstite by compression wüstite by compression. Phys Rev B 81:060101.  https://doi.org/10.1103/PhysRevB.81.060101 CrossRefGoogle Scholar
  52. Paul D (2017) Research on heavy metal pollution of river Ganga: a review. Ann Agrar Sci 15:278–286.  https://doi.org/10.1016/j.aasci.2017.04.001 CrossRefGoogle Scholar
  53. Petrova TM, Fachikov L, Hristov J (2011) The magnetite as adsorbent for some hazardous species from aqueous solution: a review. Int Rev Chem Eng Int Rev Chem Eng 3:134–152Google Scholar
  54. Qi Z, Joshi TP, Liu R, Liu H, Qu J (2017) Synthesis of Ce(III)-doped Fe3O4 magnetic particles for efficient removal of antimony from aqueous solution. J Hazard Mater 329:193–204.  https://doi.org/10.1016/j.jhazmat.2017.01.007 CrossRefGoogle Scholar
  55. Qiu H, Lv L, Pan B, Zhang QJ, Zhang WM, Zhang QX (2009) Critical review in adsorption kinetic models. J Zhejiang Univ Sci A 10:716–724.  https://doi.org/10.1631/jzus.A0820524 CrossRefGoogle Scholar
  56. Rajput S, Pittman CU, Mohan D (2016) Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. J Colloid Interface Sci 468:334–346.  https://doi.org/10.1016/j.jcis.2015.12.008 CrossRefGoogle Scholar
  57. Razzaque MS (2011) Phosphate toxicity: new insights into an old problem. Clin Sci 120:91–97.  https://doi.org/10.1042/CS20100377 CrossRefGoogle Scholar
  58. Ricciardi P, Colomban P, Tournié A, Milande V (2009) Nondestructive on-site identification of ancient glasses: genuine artefacts, embellished pieces or forgeries? J Raman Spectrosc 40:604–617.  https://doi.org/10.1002/jrs.2165 CrossRefGoogle Scholar
  59. Richet P, Mysen BO, Ingrin J (1998) High-temperature X-ray diffraction and Raman spectroscopy of diopside and pseudowollastonite. Phys Chem Miner 25:401–414.  https://doi.org/10.1007/s002690050130 CrossRefGoogle Scholar
  60. Roggwiller P, Kundig W (1973) Mössbauer spectra of superparamagnetic Fe3O4. Differentiation 12:901–903Google Scholar
  61. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids: principles, methodology and application. Academic Press, USAGoogle Scholar
  62. Rout PR, Bhunia P, Dash RR (2015) Effective utilization of a sponge iron industry by-product for phosphate removal from aqueous solution: a statistical and kinetic modelling approach. J Taiwan Inst Chem Eng 46:98–108.  https://doi.org/10.1016/j.jtice.2014.09.006 CrossRefGoogle Scholar
  63. Rout PR, Dash RR, Bhunia P (2016) Nutrient removal from binary aqueous phase by dolochar: highlighting optimization, single and binary adsorption isotherms and nutrient release. Process Saf Environ Prot 100:91–107.  https://doi.org/10.1016/j.psep.2016.01.001 CrossRefGoogle Scholar
  64. Sarin VK, Kent SBH, Tam JP, Merrifield RB (1981) Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction. Anal Biochem 117:147–157.  https://doi.org/10.1016/0003-2697(81)90704-1 CrossRefGoogle Scholar
  65. Sellaoui L, Bouzid M, Duclaux L, Reinert L, Knani S, Ben Lamine A (2016a) Binary adsorption isotherms of two ionic liquids and ibuprofen on an activated carbon cloth: simulation and interpretations using a statistical and COSMO-RS models. RSC Adv 6:67701–67714.  https://doi.org/10.1039/C6RA03405E CrossRefGoogle Scholar
  66. Sellaoui L, Dotto GL, Ben LA, Erto A (2017a) Interpretation of single and competitive adsorption of cadmium and zinc on activated carbon using monolayer and exclusive extended monolayer models. Environ Sci Pollut Res 24:19902–19908.  https://doi.org/10.1007/s11356-017-9562-8 CrossRefGoogle Scholar
  67. Sellaoui L, Dotto GL, Goncalves JO et al (2016b) Equilibrium modeling of single and binary adsorption of Food Yellow 4 and Food Blue 2 on modified chitosan using a statistical physics theory: new microscopic interpretations. J Mol Liq 222:151–158.  https://doi.org/10.1016/j.molliq.2016.07.005 CrossRefGoogle Scholar
  68. Sellaoui L, Edi Soetaredjo F, Ismadji S, Cláudio Lima É, Dotto GL, Ben Lamine A, Erto A (2017b) New insights into single-compound and binary adsorption of copper and lead ions on treated sea mango shell: experimental and theoretical studies. Phys Chem Chem Phys 19:25927–25937.  https://doi.org/10.1039/c7cp03770h CrossRefGoogle Scholar
  69. Sharma YC (2001) Adsorption of Cr(VI) onto wollastonite: effect of pH. Indian J Chem Technol 8:186–190Google Scholar
  70. Sharma YC, Gupta GS, Prasad G, Rupainwar DC (1990a) Use of wollastonite in the removal of Ni(II) from aqueous solutions. Water Air Soil Pollut 49:69–79.  https://doi.org/10.1007/BF00279511 CrossRefGoogle Scholar
  71. Sharma YC, Prasad G, Rupainwar DI (1990b) Adsorption for removal of Cd(II) from effluents. Int J Environ Stud 36:315–320.  https://doi.org/10.1080/00207239008710609 CrossRefGoogle Scholar
  72. Sharma YC, Uma SV et al (2007) Reclamation of Cr(VI) rich water and wastewater by wollastonite. Chem Eng J 127:151–156.  https://doi.org/10.1016/j.cej.2006.09.012 CrossRefGoogle Scholar
  73. Shim SE, Kim K, Oh S, Choe S (2004) Preparation of ultra fine poly(methyl methacrylate) microspheres in methanol-enriched aqueous medium. Macromol Res 12:240–245.  https://doi.org/10.1007/BF03218394 CrossRefGoogle Scholar
  74. Sokol EV, Seryotkin YV, Kokh SN, Vapnik Y, Nigmatulina EN, Goryainov SV, Belogub EV, Sharygin VV (2015) Flamite, (Ca,Na,K)2(Si,P)O4, a new mineral from ultrahightemperature combustion metamorphic rocks, Hatrurim Basin, Negev Desert, Israel. Mineral Mag 79:583–596.  https://doi.org/10.1180/minmag.2015.079.3.05 CrossRefGoogle Scholar
  75. Sreekanth Chakradhar RP, Nagabhushana BM, Chandrappa GT, Ramesh KP, Rao JL (2006) Solution combustion derived nanocrystalline macroporous wollastonite ceramics. Mater Chem Phys 95:169–175.  https://doi.org/10.1016/j.matchemphys.2005.06.002 CrossRefGoogle Scholar
  76. Stevens JG, Khasanov AM, Miller JW et al (2005) Mössbauer mineral handbook. The University of North Carolina at AshevilleGoogle Scholar
  77. Suzdalev IP, Maksimov YV, Buravtsev VN, Imshennik VK, Novichihin SV, Matveev VV, Lyubutin IS (2012) Magnetic properties of monodisperse nanomagnetite. Russ J Phys Chem B 6:163–168.  https://doi.org/10.1134/S1990793112010228 CrossRefGoogle Scholar
  78. Swamy V, Dubrovinsky LS, Tutti F (1997) High-temperature raman spectra and thermal expansion of wollastonite. J Am Ceram Soc 80:2237–2247.  https://doi.org/10.1111/j.1151-2916.1997.tb03113.x CrossRefGoogle Scholar
  79. Taleb K, Markovski J, Milosavljević M, Marinović-Cincović M, Rusmirović J, Ristić M, Marinković A (2015) Efficient arsenic removal by cross-linked macroporous polymer impregnated with hydrous iron oxide: material performance. Chem Eng J 279:279–278.  https://doi.org/10.1016/j.cej.2015.04.147 CrossRefGoogle Scholar
  80. Taleb K, Markovski J, Veličković Z, Rusmirović J, Rančić M, Pavlović V, Marinković A (2016a) Arsenic removal by magnetite-loaded amino modified nano/microcellulose adsorbents: effect of functionalization and media size. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2016.08.006
  81. Taleb KA, Rusmirović JD, Rančić MP et al (2016b) Efficient pollutants removal by amino-modified nanocellulose impregnated with iron oxide. J Serbian Chem Soc 81:81–1213.  https://doi.org/10.2298/JSC160529063T CrossRefGoogle Scholar
  82. Tejedor-Tejedor MI, Anderson MA (1990) The protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility. Langmuir 6:602–611.  https://doi.org/10.1021/la00093a015 CrossRefGoogle Scholar
  83. Veličković Z, Vuković GD, Marinković AD, Moldovan MS, Perić-Grujić AA, Uskoković PS, Ristić MĐ (2012) Adsorption of arsenate on iron(III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes. Chem Eng J 181–182:174–181.  https://doi.org/10.1016/j.cej.2011.11.052 CrossRefGoogle Scholar
  84. Vuković GD, Marinković AD, Čolić M, Ristić MĐ, Aleksić R, Perić-Grujić AA, Uskoković PS (2010) Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chem Eng J 157:238–248.  https://doi.org/10.1016/j.cej.2009.11.026 CrossRefGoogle Scholar
  85. Vuković GD, Marinković AD, Škapin SD, Ristić MĐ, Aleksić R, Perić-Grujić AA, Uskoković PS (2011) Removal of lead from water by amino modified multi-walled carbon nanotubes. Chem Eng J 173:855–865.  https://doi.org/10.1016/j.cej.2011.08.036 CrossRefGoogle Scholar
  86. Wang X, Mao H, Huang W, Guan W, Zou X, Pan J, Yan Y (2011) Preparation of magnetic imprinted polymer particles via microwave heating initiated polymerization for selective enrichment of 2-amino-4-nitrophenol from aqueous solution. Chem Eng J 178:85–92.  https://doi.org/10.1016/j.cej.2011.10.015 CrossRefGoogle Scholar
  87. Wang Y, Li B, Zhou Y, Jia D (2009) In situ mineralization of magnetite nanoparticles in chitosan hydrogel. Nanoscale Res Lett 4:1041–1046.  https://doi.org/10.1007/s11671-009-9355-1 CrossRefGoogle Scholar
  88. White SN (2009) Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals. Chem Geol 259:240–252.  https://doi.org/10.1016/j.chemgeo.2008.11.008 CrossRefGoogle Scholar
  89. Zach-Maor A, Semiat R, Shemer H (2011) Adsorption–desorption mechanism of phosphate by immobilized nano-sized magnetite layer: interface and bulk interactions. J Colloid Interface Sci 363:608–614.  https://doi.org/10.1016/j.jcis.2011.07.062 CrossRefGoogle Scholar
  90. Zeng B, Yang L, Zheng W, et al (2017) Analysis of the formation process and performance of magnetic Fe3O4@poly(4-vinylpyridine) absorbent prepared by in-situ synthesis. J Mater Sci Technol In press,: doi:  https://doi.org/10.1016/j.jmst.2017.07.007
  91. Zeng L, Chen Y, Zhang Q, Guo X, Peng Y, Xiao H, Chen X, Luo J (2015) Adsorption of Cd(II), Cu(II) and Ni(II) ions by cross-linking chitosan/rectorite nano-hybrid composite microspheres. Carbohydr Polym 130:333–343.  https://doi.org/10.1016/j.carbpol.2015.05.015 CrossRefGoogle Scholar
  92. Zhao J, Zhu YJ, Wu J, Zheng JQ, Zhao XY, Lu BQ, Chen F (2014) Chitosan-coated mesoporous microspheres of calcium silicate hydrate: environmentally friendly synthesis and application as a highly efficient adsorbent for heavy metal ions. J Colloid Interface Sci 418:208–215.  https://doi.org/10.1016/j.jcis.2013.12.016 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jelena D. Rusmirović
    • 1
    Email author
  • Nina Obradović
    • 2
  • Jovana Perendija
    • 3
  • Ana Umićević
    • 4
  • Ana Kapidžić
    • 4
  • Branislav Vlahović
    • 5
  • Vera Pavlović
    • 6
  • Aleksandar D. Marinković
    • 7
  • Vladimir B. Pavlović
    • 2
    • 8
  1. 1.Innovation Center of the Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  2. 2.Institute of Technical Sciences of SASABelgradeSerbia
  3. 3.Institute of Chemistry, Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  4. 4.Vinča Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia
  5. 5.Department of Mathematics and PhysicsNorth Carolina Central UniversityDurhamUSA
  6. 6.Faculty of Mechanical Engineering, University of BelgradeBelgradeSerbia
  7. 7.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  8. 8.Faculty of AgricultureUniversity of BelgradeZemunSerbia

Personalised recommendations