Environmental Science and Pollution Research

, Volume 26, Issue 11, pp 11170–11178 | Cite as

Effect of cation type in mixed Ca-Na systems on transport of sulfonamide antibiotics in saturated limestone porous media

  • Kaixuan Sun
  • Yuanyuan SunEmail author
  • Bin Gao
  • Hongxia Xu
  • Jichun WuEmail author
Research Article


Retention and transport of sulfonamides (SAs) in subsurface can strongly affect groundwater quality. In this work, a range of laboratory batch sorption and column transport experiments were conducted to determine the effect of cation type in mixed Ca-Na systems on the retention and transport of two typical SAs, sulfadimethoxine (SDM) and sulfacetamide (SCA), in saturated limestone porous media. Column experimental data showed divalent cation Ca2+ played a more important role than monovalent cation Na+ in decreasing the transport of only SDM in co-cation systems in the saturated limestone media. Further, in the single-cation (i.e., including either Ca2+ or Na+) system, increasing ionic strength (IS) of either NaCl or CaCl2 had little effect on SCA transport; however, increasing of IS of CaCl2 promoted the retention of SDM in the saturated limestone porous media. This is mainly due to the cation bridging effect of Ca2+ on SDM and limestone. Overall, SDM showed much higher retention in the limestone columns than SCA, which can be attributed to the two SAs’ different physicochemical properties. Moreover, limestone showed stronger ability to retain the two SAs than quartz sand. Findings in this study suggest that cation type and the concentration of certain electrolyte (e.g., CaCl2) as well as medium type play an important role in controlling the environmental fate and transport of antibiotics.


Sorption Ionic strength Leaching Breakthrough curves Column experiments Medium type 


Funding information

This study was supported by the National Key Research and Development Program of China (2018YFC0406401-2); the National Nature Science Foundation of China (41730856); the National Nature Science Foundation of China-Xinjiang Project (U1503282); and the Program B for Outstanding Ph. D candidate of Nanjing University (201802B084).

Supplementary material

11356_2019_4561_MOESM1_ESM.docx (212 kb)
ESM 1 (DOCX 211 kb)


  1. Accinelli C, Koskinen WC, Becker JM, Sadowsky MJ (2007) Environmental fate of two sulfonamide antimicrobial agents in soil. J Agric Food Chem 55:2677–2682. CrossRefGoogle Scholar
  2. Adsmond DA, Grant DJ (2001) Hydrogen bonding in sulfonamides. J Pharm Sci 90:2058–2077. CrossRefGoogle Scholar
  3. Babic S, Horvat AJM, Mutavdzic D, Kaštelan-Macan M (2007) Determination of pKa values of active pharmaceutical ingredients. Trends Anal Chem 26:1043–1061. CrossRefGoogle Scholar
  4. Batt AL, Snow DD, Aga DS (2006) Occurrence of sulfonamide antimicrobials in private water wells in Washington County, Idaho, USA. Chemosphere 64:1963–1971. CrossRefGoogle Scholar
  5. Bayat AE, Junin R, Shamshirband S, Chong WT (2015a) Transport and retention of engineered Al2O3, TiO2, and SiO2 nanoparticles through various sedimentary rocks. Sci Rep 5:1–12. Google Scholar
  6. Bayat AE, Junin R, Derahman MN, Samad AA (2015b) TiO2 nanoparticle transport and retention through saturated limestone porous media under various ionic strength conditions. Chemosphere 134:7–15. CrossRefGoogle Scholar
  7. Ben MA, Mzali H, Zouari K, Hezzi H (2014) Hydrochemical and isotopic assessment of groundwater quality in the Quaternary shallow aquifer, Tazoghrane region, north-eastern. Tunisia. Quat Int 338:51–58. CrossRefGoogle Scholar
  8. Białk-Bielińska A, Stolte S, Arning J, Uebers U, Boschen A, Stepnowski P, Matzke M (2011) Ecotoxicity evaluation of selected sulfonamides. Chemosphere 85:928–933. CrossRefGoogle Scholar
  9. Białk-Bielińska A, Maszkowska J, Mrozik W, Bielawska A, Kolodziejska M, Palavinskas R, Stepnowski P, Kumirska J (2012) Sulfadimethoxine and sulfaguanidine: their sorption potential on natural soils. Chemosphere 86:1059–1065. CrossRefGoogle Scholar
  10. Boy-Roura M, Mas-Pla J, Petrovic M, Gros M, Soler D, Brusi D, Menció A (2018) Towards the understanding of antibiotic occurrence and transport in groundwater: findings from the Baix Fluvià alluvial aquifer (NE Catalonia, Spain). Sci Total Environ 612:1387–1406. CrossRefGoogle Scholar
  11. Chen H, Gao B, Li H, Ma LQ (2011) Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media. J Contam Hydrol 126:29–36. CrossRefGoogle Scholar
  12. Chen K, Liu L, Chen W (2017) Adsorption of sulfamethoxazole and sulfapyridine antibiotics in high organic content soils. Environ Pollut 231:1163–1171. CrossRefGoogle Scholar
  13. Demoling LA, Bååth E, Greve G, Wouterse M, Schmitt H (2009) Effects of sulfamethoxazole on soil microbial communities after adding substrate. Soil Biol Biochem 41:840–848. CrossRefGoogle Scholar
  14. Dong S, Gao B, Sun Y, Shi X, Xu H, Wu J, Wu J (2016) Transport of sulfacetamide and levofloxacin in granular porous media under various conditions: experimental observations and model simulations. Sci Total Environ 573:1630–1637. CrossRefGoogle Scholar
  15. Dong S, Sun Y, Gao B, Shi X, Xu H, Wu J, Wu J (2017) Retention and transport of graphene oxide in water-saturated limestone media. Chemosphere 180:506–512. CrossRefGoogle Scholar
  16. Doretto KM, Peruchi LM, Rath S (2014) Sorption and desorption of sulfadimethoxine, sulfaquinoxaline and sulfamethazine antimicrobials in Brazilian soils. Sci Total Environ 476-477:406–414. CrossRefGoogle Scholar
  17. Gao J, Pedersen JA (2005) Adsorption of sulfonamide antimicrobial agents to clay minerals. Environ Sci Technol 39:9509–9516. CrossRefGoogle Scholar
  18. Ji Y, Wang F, Duan L, Zhang F, Gong X (2013) Effect of temperature on the adsorption of sulfanilamide onto aluminum oxide and its molecular dynamics simulations. Appl Surf Sci 285:403–408. CrossRefGoogle Scholar
  19. Karimi A, Fakhroueian Z, Bahramian A, Pour KN, Darabad JB, Azin R, Arya S (2012) Wettability alteration in carbonates using zirconium oxide nanofluids: EOR implications. Energy Fuel 26:1028–1036. CrossRefGoogle Scholar
  20. Kurwadkar ST, Adams CD, Meyer MT, Kolpin DW (2011) Comparative mobility of sulfonamides and bromide tracer in three soils. J Environ Manag 92:1874–1881. CrossRefGoogle Scholar
  21. Lertpaitoonpan W, Ong SK, Moorman TB (2009) Effect of organic carbon and pH on soil sorption of sulfamethazine. Chemosphere 76:558–564. CrossRefGoogle Scholar
  22. Lv X, Sun Y, Ji R, Gao B, Wu J, Lu Q, Jiang H (2018) Physicochemical factors controlling the retention and transport of perfluorooctanoic acid (PFOA) in saturated sand and limestone porous media. Water Res 141:251–258. CrossRefGoogle Scholar
  23. Ma R, Wang Y, Sun Z, Zheng C, Ma T, Prommer H (2011) Geochemical evolution of groundwater in carbonate aquifers in Taiyuan, northern China. Appl Geochem 26:884–897. CrossRefGoogle Scholar
  24. Maszkowska J, Kolodziejska M, Białk-Bielińska A, Mrozik W, Kumirska J, Stepnowski P, Palavinskas R, Kruger O, Kalbe U (2013) Column and batch tests of sulfonamide leaching from different types of soil. J Hazard Mater 260:468–474. CrossRefGoogle Scholar
  25. Maszkowska J, Białk-Bielińska A, Mioduszewska K, Wagil M, Kumirska J, Stepnowski P (2015) Sorption of sulfisoxazole onto soil-an insight into different influencing factors. Environ Sci Pollut Res 22:12182–12189. CrossRefGoogle Scholar
  26. Moral F, Cruz-Sanjulián JJ, Olías M (2008) Geochemical evolution of groundwater in the carbonate aquifers of Sierra de Segura (Betic Cordillera, southern Spain). J Hydrol 360:281–296. CrossRefGoogle Scholar
  27. Morel MC, Spadini L, Brimo K, Martins JM (2014) Speciation study in the sulfamethoxazole-copper-pH-soil system: implications for retention prediction. Sci Total Environ 481:266–273. CrossRefGoogle Scholar
  28. Pacheco J, Marín L, Cabrera A, Steinich B, Escolero O (2001) Nitrate temporal and spatial patterns in 12 water-supply wells, Yucatan, Mexico. Environ Geol 40:708–715. CrossRefGoogle Scholar
  29. Park JY, Huwe B (2016) Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils. Environ Pollut 213:561–570. CrossRefGoogle Scholar
  30. Postigo C, García-Galán MJ, Köck-Schulmeyer M, Barceló D (2015) Occurrence of polar organic pollutants in groundwater bodies of Catalonia. In: Antoi M, Anoit G, Narcís P (eds) The handbook of environmental chemistry. Springer, Cham, pp 63–89. Google Scholar
  31. Proia L, Lupini G, Osorio V, Perez S, Barcelo D, Schwartz T, Amalfitano S, Fazi S, Romani AM, Sabater S (2013) Response of biofilm bacterial communities to antibiotic pollutants in a Mediterranean river. Chemosphere 92:1126–1135. CrossRefGoogle Scholar
  32. Richter MK, Sander M, Krauss M, Christl I, Dahinden MG, Schneider MK, Schwarzenbach RP (2009) Cation binding of antimicrobial sulfathiazole to leonardite humic acid. Environ Sci Technol 43:6632–6638. CrossRefGoogle Scholar
  33. Salehi M, Johnson SJ, Liang JT (2008) Mechanistic study of wettability alteration using surfactants with applications in naturally fractured reservoirs. Langmuir 24:14099–140107. CrossRefGoogle Scholar
  34. Srinivasan P, Sarmah AK (2014) Assessing the sorption and leaching behaviour of three sulfonamides in pasture soils through batch and column studies. Sci Total Environ 493:535–543. CrossRefGoogle Scholar
  35. Srinivasan P, Sarmah AK, Manley-Harris M (2013) Co-contaminants and factors affecting the sorption behaviour of two sulfonamides in pasture soils. Environ Pollut 180:165–172. CrossRefGoogle Scholar
  36. Srinivasan P, Sarmah AK, Manley-Harris M (2014) Sorption of selected veterinary antibiotics onto dairy farming soils of contrasting nature. Sci Total Environ 472:695–703. CrossRefGoogle Scholar
  37. Szekeres E, Chiriac CM, Baricz A, Szoke-Nagy T, Lung I, Soran ML, Rudi K, Dragos N, Coman C (2018) Investigating antibiotics, antibiotic resistance genes, and microbial contaminants in groundwater in relation to the proximity of urban areas. Environ Pollut 236:734–744. CrossRefGoogle Scholar
  38. Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils - a review. J Plant Nutr Soil Sc 166:145–157. CrossRefGoogle Scholar
  39. Thiele-Bruhn S, Seibicke T, Schulten HR, Leinweber P (2004) Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions. J Environ Qual 33:1331–1342. CrossRefGoogle Scholar
  40. Tian Y, Gao B, Silvera-Batista C, Ziegler KJ (2010) Transport of engineered nanoparticles in saturated porous media. J Nanopart Res 12:2371–2380. CrossRefGoogle Scholar
  41. Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol 35:3397–3406. CrossRefGoogle Scholar
  42. Wang P, Yu J, Zhang Y, Liu C (2013) Groundwater recharge and hydrogeochemical evolution in the Ejina Basin, Northwest China. J Hydrol 476:72–86. CrossRefGoogle Scholar
  43. Wang C, Dong D, Strong PJ, Zhu W, Ma Z, Qin Y, Wu W (2017) Microbial phylogeny determines transcriptional response of resistome to dynamic composting processes. Microbiome 5:103. CrossRefGoogle Scholar
  44. Wei J, Sun W, Pan W, Yu X, Sun G, Jiang H (2017) Comparing the effects of different oxygen-containing functional groups on sulfonamides adsorption by carbon nanotubes: experiments and theoretical calculation. Chem Eng J 312:167–179. CrossRefGoogle Scholar
  45. Xu Y, Yu W, Ma Q, Zhou H (2015) Interactive effects of sulfadiazine and cu (II) on their sorption and desorption on two soils with different characteristics. Chemosphere 138:701–707. CrossRefGoogle Scholar
  46. Yang L, Wu L, Liu W, Huang Y, Luo Y, Christie P (2018) Dissipation of antibiotics in three different agricultural soils after repeated application of biosolids. Environ Sci Pollut Res 25(1):104–114. CrossRefGoogle Scholar
  47. Yao L, Wang Y, Tong L, Li Y, Deng Y, Guo W, Gan Y (2015) Seasonal variation of antibiotics concentration in the aquatic environment: a case study at Jianghan Plain, central China. Sci Total Environ 527-528:56–64. CrossRefGoogle Scholar
  48. Zhao W, Wang B, Yu G (2018) Antibiotic resistance genes in China: occurrence, risk, and correlation among different parameters. Environ Sci Pollut Res 25:21467–21482. CrossRefGoogle Scholar
  49. Zhou D, Thiele-Bruhn S, Arenz-Leufen MG, Jacques D, Lichtner P, Engelhardt I (2016) Impact of manure-related DOM on sulfonamide transport in arable soils. J Contam Hydrol 192:118–128. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Surficial Geochemisty, Ministry of Education, School of Earth Sciences and EngineeringNanjing UniversityNanjingChina
  2. 2.Department of Agricultural and Biological EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations