Environmental Science and Pollution Research

, Volume 26, Issue 10, pp 10070–10082 | Cite as

The impact of particulate matter on allergy risk among adults: integrated exposure assessment

  • Audrius DėdelėEmail author
  • Auksė Miškinytė
  • Regina Gražulevičienė
Research Article


Exposure assessment is an important part in environmental epidemiology for determining the associations of environmental factors with health effects. One of the greatest challenges for personal exposure assessment is associated with peoples’ mobility during the day and spatial and temporal dynamics of air pollution. In this study, the impact of PM10 (particulate matter less than 10 μm) on allergy risk among adults was assessed using objective methods of exposure assessment. The primary objective of the present study was to estimate personal exposure to PM10 based on individual daily movement patterns. Significant differences between the concentration of PM10 in different microenvironments (MEs) and personal exposure to PM10 were determined. Home exposure accounted for the largest part of PM10 exposure. Thirty-five percent of PM10 exposure was received in other non-home MEs. Allergy risk increased significantly with increasing exposure to PM10. Adults exposed to the highest levels of PM10 exposure had a twice-higher risk of allergies than adults exposed to the lowest levels of PM10 exposure. The study results have practical relevance for exposure assessment to environmental factors and its impact on health effects.


Particulate matter PM10 Exposure assessment Allergy risk Microenvironment GPS 



The study was supported by the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 282996 (ENV.2011.1.2.3-2) (Positive effects of natural environment for human health and well-being) Duration 1 January 2012–31 December 2015, and the grant of the Lithuanian Agency for Science Innovation and Technology on 23 September 2015, no. 31V-70.

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

Ethics approval

Ethics approval was obtained for all aspects of the study by the Lithuanian Bioethics Committee, and informed consent was obtained from all participants.


  1. Adam M, Schikowski T, Carsin AE, Cai Y, Jacquemin B, Sanchez M, Vierkötter A, Marcon A, Keidel D, Sugiri D, Al Kanani Z, Nadif R, Siroux V, Hardy R, Kuh D, Rochat T, Bridevaux PO, Eeftens M, Tsai MY, Villani S, Phuleria HC, Birk M, Cyrys J, Cirach M, de Nazelle A, Nieuwenhuijsen MJ, Forsberg B, de Hoogh K, Declerq C, Bono R, Piccioni P, Quass U, Heinrich J, Jarvis D, Pin I, Beelen R, Hoek G, Brunekreef B, Schindler C, Sunyer J, Krämer U, Kauffmann F, Hansell AL, Künzli N, Probst-Hensch N (2015) Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis. Eur Respir J 45:38–50. CrossRefGoogle Scholar
  2. Agrawal S (2012) Effect of indoor air pollution from biomass and solid fuel combustion on prevalence of self-reported asthma among adult men and women in India: findings from a nationwide large-scale cross-sectional survey. J Asthma 49:355–365. CrossRefGoogle Scholar
  3. Baldacci S, Maio S, Cerrai S, Sarno G, Baïz N, Simoni M, Annesi-Maesano I, Viegi G, HEALS Study (2015) Allergy and asthma: effects of the exposure to particulate matter and biological allergens. Respir Med 109:1089–1104. CrossRefGoogle Scholar
  4. Berger A (2000) Science commentary: Th1 and Th2 responses: what are they? BMJ 321:424–424. CrossRefGoogle Scholar
  5. Dadvand P, de Nazelle A, Triguero-Mas M, Schembari A, Cirach M, Amoly E, Figueras F, Basagaña X, Ostro B, Nieuwenhuijsen M (2012) Surrounding greenness and exposure to air pollution during pregnancy: an analysis of personal monitoring data. Environ Health Perspect 120:1286–1290. CrossRefGoogle Scholar
  6. Dalton AM, Wareham N, Griffin S, Jones AP (2016) Neighbourhood greenspace is associated with a slower decline in physical activity in older adults: a prospective cohort study. SSM Popul Health 2:683–691. CrossRefGoogle Scholar
  7. Darçın M (2014) Association between air quality and quality of life. Environ Sci Pollut Res 21:1954–1959. CrossRefGoogle Scholar
  8. de Nazelle A, Seto E, Donaire-Gonzalez D, Mendez M, Matamala J, Nieuwenhuijsen MJ, Jerrett M (2013) Improving estimates of air pollution exposure through ubiquitous sensing technologies. Environ Pollut 176:92–99. CrossRefGoogle Scholar
  9. Dėdelė A, Miškinytė A (2015) The statistical evaluation and comparison of ADMS-Urban model for the prediction of nitrogen dioxide with air quality monitoring network. Environ Monit Assess 187:578. CrossRefGoogle Scholar
  10. Devi JJ, Gupta T, Jat R, Tripathi SN (2013) Measurement of personal and integrated exposure to particulate matter and co-pollutant gases. Environ Sci Pollut Res 20:1632–1648. CrossRefGoogle Scholar
  11. Dewulf B, Neutens T, Lefebvre W, Seynaeve G, Vanpoucke C, Beckx C, Van de Weghe N (2016) Dynamic assessment of exposure to air pollution using mobile phone data. Int J Health Geogr 15:14. CrossRefGoogle Scholar
  12. Donaire-Gonzalez D, de Nazelle A, Seto E, Mendez M, Nieuwenhuijsen MJ, Jerrett M (2013) Comparison of physical activity measures using mobile phone-based calfit and actigraph. J Med Internet Res 15(6):e111. CrossRefGoogle Scholar
  13. Duan N (1982) Models for human exposure to air pollution. Environ Int 8:305–309. CrossRefGoogle Scholar
  14. Giovanis E, Ozdamar O (2018) Health status, mental health and air quality: evidence from pensioners in Europe. Environ Sci Pollut Res 25:14206–14225. CrossRefGoogle Scholar
  15. Good N, Mölter A, Ackerson C, Bachand A, Carpenter T, Clark ML, Fedak KM, Kayne A, Koehler K, Moore B, L'Orange C, Quinn C, Ugave V, Stuart AL, Peel JL, Volckens J (2016) The Fort Collins commuter study: impact of route type and transport mode on personal exposure to multiple air pollutants. J Expo Sci Environ Epidemiol 26:397–404. CrossRefGoogle Scholar
  16. Guarnieri M, Balmes JR (2014) Outdoor air pollution and asthma. Lancet 383:1581–1592. CrossRefGoogle Scholar
  17. Gulliver J, Briggs DJ (2005) Time-space modeling of journey-time exposure to traffic-related air pollution using GIS. Environ Res 97:10–25. CrossRefGoogle Scholar
  18. Jacquemin B, Kauffmann F, Pin I, Le Moual N, Bousquet J, Gormand F, Just J, Nadif R, Pison C, Vervloet D, Künzli N, Siroux V, Epidemiological study on the Genetics and Environment of Asthma (EGEA) (2012) Air pollution and asthma control in the Epidemiological study on the Genetics and Environment of Asthma. J Epidemiol Community Health 66:796–802. CrossRefGoogle Scholar
  19. James P, Banay RF, Hart JE, Laden F (2015) A review of the health benefits of greenness. Curr Epidemiol Rep 2:131–142. CrossRefGoogle Scholar
  20. Janhäll S (2015) Review on urban vegetation and particle air pollution - deposition and dispersion. Atmos Environ 105:130–137. CrossRefGoogle Scholar
  21. Jerrett M, Arain A, Kanaroglou P, Beckerman B, Potoglou D, Sahsuvaroglu T, Morrison J, Giovis C (2005) A review and evaluation of intraurban air pollution exposure models. J Expo Anal Environ Epidemiol 15:185–204. CrossRefGoogle Scholar
  22. Karanasiou A, Viana M, Querol X, Moreno T, de Leeuw F (2014) Assessment of personal exposure to particulate air pollution during commuting in European cities-recommendations and policy implications. Sci Total Environ 490:785–797. CrossRefGoogle Scholar
  23. Kim KH, Jahan SA, Kabir E (2013) A review on human health perspective of air pollution with respect to allergies and asthma. Environ Int 59:41–52. ReviewCrossRefGoogle Scholar
  24. Korek M, Johansson C, Svensson N, Lind T, Beelen R, Hoek G, Pershagen G, Bellander T (2016) Can dispersion modeling of air pollution be improved by land-use regression? An example from Stockholm, Sweden. J Expo Sci Environ Epidemiol 27:575–581. CrossRefGoogle Scholar
  25. Kornartit C, Sokhi RS, Burton MA, Ravindra K (2010) Activity pattern and personal exposure to nitrogen dioxide in indoor and outdoor microenvironments. Environ Int 36:36–45. CrossRefGoogle Scholar
  26. Künzli N, Bridevaux PO, Liu LJS, Garcia-Esteban R, Schindler C, Gerbase MW, Sunyer J, Keidel D, Rochat T, Swiss Cohort Study on Air Pollution and Lung Diseases in Adults (2009) Traffic-related air pollution correlates with adult-onset asthma among never-smokers. Thorax 64:664–670. CrossRefGoogle Scholar
  27. Kwan MP, Liu D, Vogliano J (2015) Assessing dynamic exposure to air pollution. In: Kwan MP, Richardson D, Wang D, Zhou C (eds) Space-time integration in geography and GIScience. Springer, Dordrecht. CrossRefGoogle Scholar
  28. Lee PH (2014) Is a cutoff of 10% appropriate for the change-in-estimate criterion of confounder identification? J Epidemiol 24:161–167. CrossRefGoogle Scholar
  29. Lee ACK, Jordan HC, Horsley J (2015) Value of urban green spaces in promoting healthy living and wellbeing: prospects for planning. Risk Manag Healthc Policy 8:131–137. CrossRefGoogle Scholar
  30. Lonati G, Ozgen S, Luraghi I, Giugliano M (2010) Particle number concentration at urban microenvironments. Chem Eng Trans 22:137–142. CrossRefGoogle Scholar
  31. Maio S, Baldacci S, Carrozzi L, Pistelli F, Angino A, Simoni M, Sarno G, Cerrai S, Martini F, Fresta M, Silvi P, Di Pede F, Guerriero M, Viegi G (2016) Respiratory symptoms/diseases prevalence is still increasing: a 25-yr population study. Respir Med 110:58–65. CrossRefGoogle Scholar
  32. Malig BJ, Green S, Basu R, Broadwin R (2013) Coarse particles and respiratory emergency department visits in California. Am J Epidemiol 178:58–69. CrossRefGoogle Scholar
  33. Mann JK, Balmes JR, Bruckner TA, Mortimer KM, Margolis HG, Pratt B, Hammond SK, Lurmann FW, Tager IB (2010) Short-term effects of air pollution on wheeze in asthmatic children in Fresno, California. Environ Health Perspect 118:1497–1502. CrossRefGoogle Scholar
  34. Meng Y-Y, Rull RP, Wilhelm M, Lombardi C, Balmes J, Ritz B (2010) Outdoor air pollution and uncontrolled asthma in the San Joaquin Valley, California. J Epidemiol Community Health 64:142–147. CrossRefGoogle Scholar
  35. Morgenstern V, Zutavern A, Cyrys J, Brockow I, Koletzko S, Krämer U, Behrendt H, Herbarth O, von Berg A, Bauer CP, Wichmann HE, Heinrich J, GINI Study Group; LISA Study Group (2008) Atopic diseases, allergic sensitization, and exposure to traffic-related air pollution in children. Am J Respir Crit Care Med 177:1331–1337. CrossRefGoogle Scholar
  36. Nieuwenhuijsen M, Paustenbach D, Duarte-Davidson R (2006) New developments in exposure assessment: the impact on the practice of health risk assessment and epidemiological studies. Environ Int 32:996–1009. CrossRefGoogle Scholar
  37. Nieuwenhuijsen MJ, Kruize H, Gidlow C, Andrusaityte S, Antó JM, Basagaña X, Cirach M, Dadvand P, Danileviciute A, Donaire-Gonzalez D, Garcia J, Jerrett M, Jones M, Julvez J, van Kempen E, van Kamp I, Maas J, Seto E, Smith G, Triguero M, Wendel-Vos W, Wright J, Zufferey J, van den Hazel PJ, Lawrence R, Grazuleviciene R (2014) Positive health effects of the natural outdoor environment in typical populations in different regions in Europe (PHENOTYPE): a study programme protocol. BMJ Open 4:e004951. CrossRefGoogle Scholar
  38. Park YM, Kwan MP (2017) Individual exposure estimates may be erroneous when spatiotemporal variability of air pollution and human mobility are ignored. Health Place 43:85–94. CrossRefGoogle Scholar
  39. Reis S, Seto E, Northcross A, Quinn NWT, Convertino M, Jones RL, Maier HR, Schlink U, Steinle S, Vieno M, Wimberly MC (2015) Integrating modelling and smart sensors for environmental and human health. Environ Model Softw 74:238–246. CrossRefGoogle Scholar
  40. Schultz AA, Schauer JJ, Malecki KM (2017) Allergic disease associations with regional and localized estimates of air pollution. Environ Res 155:77–85. CrossRefGoogle Scholar
  41. Selmi W, Weber C, Rivière E, Blond N, Mehdi L, Nowak D (2016) Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban For Urban Gree 17:192–201. CrossRefGoogle Scholar
  42. Semple S (2005) Assessing occupational and environmental exposure. Occup Med 55:419–424. CrossRefGoogle Scholar
  43. Seto E, Matin E, Yang A, Yan P, Gravina R, Lin I, Wang C, Roy M, Shia V, Bajcsy R (2010) Opportunistic strategies for lightweight signal processing for body sensor networks. Acm International Conference Proceeding Series doi
  44. Silva RA, Adelman Z, Fry MM, West JJ (2016) The impact of individual anthropogenic emissions sectors on the global burden of human mortality due to ambient air pollution. Environ Health Perspect 124:1776–1784. CrossRefGoogle Scholar
  45. Skelly A, Dettori J, Brodt E (2012) Assessing bias: the importance of considering confounding. Evid Based Spine Care J 3:9–12. CrossRefGoogle Scholar
  46. Spinazzè A, Cattaneo A, Peruzzo C, Cavallo DM (2014) Modeling population exposure to ultrafine particles in a major Italian urban area. Int J Environ Res Public Health 11:10641–10662. CrossRefGoogle Scholar
  47. Steinle S, Reis S, Sabel CE, Semple S, Twigg MM, Braban CF, Leeson SR, Heal MR, Harrison D, Lin C, Wu H (2015) Personal exposure monitoring of PM2.5 in indoor and outdoor microenvironments. Sci Total Environ 508:383–394. CrossRefGoogle Scholar
  48. van den Berg M, Wendel-Vos W, van Poppel M, Kemper H, van Mechelen W, Maas J (2015) Health benefits of green spaces in the living environment: a systematic review of epidemiological studies. Urban For Urban Gree 14:806–816. CrossRefGoogle Scholar
  49. Wang IJ, Tung TH, Tang CS, Zhao ZH (2016) Allergens, air pollutants, and childhood allergic diseases. Int J Hyg Environ Health 219:66–71. CrossRefGoogle Scholar
  50. WHO (World Health Organization) (2016) Preventing disease through healthy environments: a global assessment of the burden of disease from environmental risks. Accessed 04 January 2019
  51. Wolch JR, Byrne J, Newell JP (2014) Urban green space, public health, and environmental justice: the challenge of making cities “just green enough.”. Landsc Urban Plan 125:234–244. CrossRefGoogle Scholar
  52. Zuurbier M, Hoek G, Oldenwening M, Lenters V, Meliefste K, van den Hazel P, Brunekreef B (2010) Commuters’ exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route. Environ Health Perspect 118:783–789. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Audrius Dėdelė
    • 1
    Email author
  • Auksė Miškinytė
    • 1
  • Regina Gražulevičienė
    • 1
  1. 1.Department of Environmental Sciences, Faculty of Natural SciencesVytautas Magnus UniversityKaunasLithuania

Personalised recommendations