Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 10, pp 10000–10012 | Cite as

A comparative study of trace elements in Cymodocea nodosa from three semi-enclosed coastal areas in Tunisia

  • Rym Zakhama-SraiebEmail author
  • Imen Zribi
  • Intissar Mnasri
  • Faouzia Charfi-Cheikhrouha
Research Article

Abstract

The present study quantifies the levels of five trace elements (TEs) Zn, Cu, Ni, Pb, and Cd in the leaves and rhizomes of Cymodocea nodosa as well as the surficial sediments from three semi-enclosed coastal areas in Tunisia, in the south Mediterranean Sea. Samples were taken from the Bizerte and Ghar El Melh lagoons and from marina Cap Monastir. The TE ranking was found to be Zn > Cu > Pb > Ni > Cd in sediments and Zn > Cu = Ni = Pb = Cd in C. nodosa leaves and rhizomes. Except for Ni, levels of Zn, Cu, Pb, and Cd significantly differed between the sites. Translocation factors (TFs) were > 1 for all trace elements proving the high capacity of C. nodosa to accumulate TEs in its above-ground tissues. Results show that marina Cap Monastir’s meadow exhibits higher TFs than the Bizerte and Ghar El Melh lagoons. This can be due to the presence of the non-indigenous species Halophila stipulacea. The present study highlights the need for further investigation on the effect of interspecific interaction on TE uptake by seagrasses.

Keywords

Cymodocea nodosa Halophila stipulacea Trace element Lagoon Marina Tunisia 

Notes

References

  1. Abdennadher A, Ramírez F, Romdhane MS, Ruiz X, Jover L, Sanpera C (2011) Little egret (Egretta garzetta) as a bioindicator of trace element pollution in Tunisian aquatic ecosystems. Environ Monit Assess 175:677–684.  https://doi.org/10.1007/s10661-010-1560-y CrossRefGoogle Scholar
  2. Annabi A, El Mouadeb R, Herrel A (2018) Distinctive accumulation patterns of heavy metals in Sardinella aurita (Clupeidae) and Mugil cephalus (Mugilidae) tissues. Environ Sci Pollut Res 25(3):2623–2629.  https://doi.org/10.1007/s11356-017-0703-x CrossRefGoogle Scholar
  3. Barhoumi S, Messaoudi I, Deli T, Said K, Kerkeni A (2009) Cadmium bioaccumulation in three benthic fish species, Salaria basilisca, Zosterisessor ophiocephalus and Solea vulgaris collected from the Gulf of Gabès in Tunisia. J Environ Sci 21(7):980–984.  https://doi.org/10.1016/S1001-0742(08)62371-2 CrossRefGoogle Scholar
  4. Barhoumi B, Elbarhoumi A, Clerandeau C, A-Rawabdeh AM, Atyaoui A, Touil S, Driss MR, Cachot J (2016) Using an integrated approach to assess the sediment quality of an Mediterranean lagoon, the Bizerte lagoon (Tunisia). Ecotoxicology 25(6):1082–1104.  https://doi.org/10.1007/s10646-016-1664-4 CrossRefGoogle Scholar
  5. Ben Alaya H (1972) Répartition et conditions d’installation de Posidonia oceanica Delile et Cymodocea nodosa Asherson dans le Golfe de Tunis. Bull Inst Natl Sci Tech Oceanogr Peche Salammbo 2(3):331–416Google Scholar
  6. Ben Garali A, Ouakad M, Gueddari M (2013) Episodic sedimentation of heavy metals and iron in the Bizerte lagoon, northern Tunisia. IJG 04:24–35.  https://doi.org/10.4236/ijg.2013.41003 CrossRefGoogle Scholar
  7. Ben Mna H, Oueslati W, Helali MA, Zaaboud N, Added A, Aleya L (2017) Distribution and assessment of heavy metal toxicity in sediment cores from Bizerte Lagoon. Tunisia Environ Monit Assess 189:356.  https://doi.org/10.1007/s10661-017-6073-5 CrossRefGoogle Scholar
  8. Ben Salem Z, Ayadi H (2016) Assessment of heavy metal contamination levels and toxicity in sediments and fishes from the Mediterranean Sea (southern coast of Sfax, Tunisia). Environ Sci Pollut Res 23(14):13954–13963.  https://doi.org/10.1007/s11356-016-6534-3 CrossRefGoogle Scholar
  9. Birch GF, Cox BM, Besley CH (2018) The relationship between metal concentrations in seagrass (Zostera capricorni) tissues and ambient fine sediment in modified and near pristine estuaries (Sydney estuaries, Australia). Mar Pollut Bull 128:72–81.  https://doi.org/10.1016/j.marpolbul.2018.01.006 CrossRefGoogle Scholar
  10. Bonanno G, Borg JA (2018) Comparative analysis of trace element in seagrass Posidonia oceanica and Cymodocea nodosa: biomonitoring applications and legislative issues. Mar Pollut Bull 128:24–31.  https://doi.org/10.1016/j.marpolbul.2018.01.013 CrossRefGoogle Scholar
  11. Bonanno G, Di Martino V (2016) Seagrass Cymodocea nodosa as a trace element biomonitor: bioaccumulation patterns and biomonitoring uses. J Geochem Explor 169:43–49.  https://doi.org/10.1016/j.gexplo.2016.07.010 CrossRefGoogle Scholar
  12. Callaway RM, Pugnaire FI (2007) Facilitation in plant communities. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology, 2nd edn. CRC Press, Boca Raton, pp 435–455Google Scholar
  13. Catsiki VA, Panayotidis P (1993) Copper, chromium and nickel in tissues of the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa from Greek coastal areas. Chemosphere 26:963–978.  https://doi.org/10.1016/0045-6535(93)90371-B CrossRefGoogle Scholar
  14. Chouba L, Kraiem M, Njimi W, Tissaoui CH, Thompson JR, Flower RJ (2007) Seasonal variation of heavy metals (Cd, Pb and Hg) in sediments and in mullet, Mugil cephalus (Mugilidae) from the Ghar El Melh Lagoon (Tunisia). Transit Wat Bull 4:45–52.  https://doi.org/10.1285/i1825229Xv1n4p45 CrossRefGoogle Scholar
  15. Deng H, Ye ZH, Wong MH (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut 132(1):29–40.  https://doi.org/10.1016/j.envpol.2004.03.030
  16. Diao SY, Zhang LZ, Yuan H (2005) Progress in the toxicity mechanism of cadmium. Prev Vet Med 26(5):49–51Google Scholar
  17. Djellouli A (2000) Macroflore benthique de la lagune de Bizerte. In Proceeeding of the first Mediterranean symposium on the marine vegetation (Ajaccio, 3-4 October 2000). RAC/SPA Tunis 128–131Google Scholar
  18. El Ati Hellal M, Hellal F, El Khemissi Z, Jebali R, Dachraoui M (2011) Trace metals in algae and sediments from the north-eastern Tunisian lagoons. Bull Environ Contam Toxicol 86(2):194–198.  https://doi.org/10.1007/s00128-010-0175-x
  19. El Zrelli R, Courjault-Radé P, Rabaoui L, Daghbouj N, Mansour L, Balti R, Castet S, Attia F, Michel S, Bejaoui L (2017) Biomonitoring of coastal pollution in the gulf of Gabès (SE, Tunisia): use of Posidonia oceanica seagrass as a bioindicator and its mat as an archive of coastal metallic contamination. Environ Sci Pollut Res 24(28):22214–22225.  https://doi.org/10.1007/s11356-017-9856-x CrossRefGoogle Scholar
  20. EPA (2007) Framework for metal risk assessment. U.S. Environmental Protection Agency. Office of the Science Advisor, Washington D.C.Google Scholar
  21. Faganeli J, Vriser B, Leskovsek H, Cermelj B, Planinc R (1997) The impact of highway pollution on the coastal sea. In: Water pollution IV: modeling, measuring and prediction. Elsevier Applied Science, New York, pp 161–173Google Scholar
  22. Ferrat L, Pergent-Martini C, Romeo M (2003) Assessment of the use of biomarkers in aquatic plants for the evaluation of environmental quality: application to seagrasses. Aquat Toxicol 65(2):187–204.  https://doi.org/10.1016/S0166-445X(03)00133-4 CrossRefGoogle Scholar
  23. Fertouna-Bellakhal M, Dhib A, Bjéaoui B, Turki S, Aleya L (2014) Driving factors behind the distribution of dinocyst composition and abundance in surface sediments in a western Mediterranean coastal lagoon: report from a high resolution mapping study. Mar Pollut Bull 84(1–2):347–362.  https://doi.org/10.1016/j.marpolbul.2014.04.041 CrossRefGoogle Scholar
  24. Frerot H, Lefebvre C, Gruber W, Collin C, Dos Santos A, Escarré J (2006) Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant Soil 282(1–2):53–65.  https://doi.org/10.1007/s11104-005-5315-4 CrossRefGoogle Scholar
  25. Ismail A, Ktari L, Ahmed M, Bolhuis H, Bouhaouala-Zahar B, Stal LJ, Boudabbous A, El Bour M (2018) Heterotrophic bacteria associated with green alga Ulva rigida: identification and antimicrobial potential. J Appl Phycol 30:2883–2899.  https://doi.org/10.1007/s10811-018-1454-x CrossRefGoogle Scholar
  26. Koelbener A, Ramseier D, Suter M (2008) Competition alters plant species response to nickel and zinc. Plant Soil 303:241–251.  https://doi.org/10.1007/s11104-007-9503-2 CrossRefGoogle Scholar
  27. Ladhar-Chaabouni R, Machreki-Ajmi M, Hamza-Chaffai A (2009) Spatial distribution of cadmium and some biomarkers in Cerastoderma glaucum living in a polluted area. Mar Biol Res 5(5):478–486.  https://doi.org/10.1080/17451000802683985 CrossRefGoogle Scholar
  28. Llagostera I, Pérez M, Romero J (2011) Trace metal content in the seagrass Cymodocea nodosa: differential accumulation in plant organs. Aquat Bot 95(2):124–128.  https://doi.org/10.1016/j.aquabot.2011.04.005 CrossRefGoogle Scholar
  29. Luy N, Gobert S, Sartortto S, Biondo R, Bouquegneau JM, Richir J (2012) Chemical contamination along the Mediterranean French coast using Posidonia oceanica (L.) Delile above-ground tissues: a multiple trace element study. Ecol Indic 18:269–277.  https://doi.org/10.1016/j.ecolind.2011.11.005 CrossRefGoogle Scholar
  30. Malea P (1993) Bioaccumulation of aluminium in the seagrasses Cymodocea nodosa (Ucria) Aschers and Posidonia oceanica (L.) Delile and in Macroalgae of the Gulf of Antikyra (Greece). Bot Mar 36(5):423–431.  https://doi.org/10.1515/botm.1993.36.5.423 CrossRefGoogle Scholar
  31. Malea P, Haritonidis S (1995) Local distribution and seasonal variation of Fe, Pb, Zn, Cu, Cd, Na, K, Ca and Mg concentrations in the seagrass Cymodocea nodosa (Ucria) Aschers in the Antikyra Gulf, Greece. PSZNZ Mar Ecol 16:41–56.  https://doi.org/10.1111/j.1439-0485.1995.tb00393.x CrossRefGoogle Scholar
  32. Malea P, Haritonidis S (1999) Cymodocea nodosa (Ucria) Aschers as a bioindicator of metals in Thermaikos Gulf, Greece, during monthly samplings. Bot Mar 42:419–430.  https://doi.org/10.1515/BOT.1999.048 CrossRefGoogle Scholar
  33. Malea P, Haritonidis S (2005) Cymodocea nodosa (Ucria) Aschers. As a bioindicator of metals in Thermaikos Gulf, Greece, during monthly samplings. Bot Mar 42(5):419–430.  https://doi.org/10.1515/BOT.1999.048 CrossRefGoogle Scholar
  34. Malea P, Kevrekidis T (2013) Trace element (Al, As, B, Ba, Cr, Mo, Ni, Se, Sr, Tl, U and V) distribution and seasonality in compartments of the seagrass Cymodocea nodosa. Sci Total Environ 463-464:611–623.  https://doi.org/10.1016/j.scitotenv.2013.06.074 CrossRefGoogle Scholar
  35. Malea P, Kevrekidis T, Potouroglou M (2013) Seasonal variation of trace metal (Mn, Zn, Cu, Pb, Co, Cd) concentrations in compartments of the seagrass Cymodocea nodosa. Bot Mar 56(2):169–184.  https://doi.org/10.1515/bot-2012-0138 CrossRefGoogle Scholar
  36. Malea P, Kevrekidis T, Chatzipanagiotou KR, Mogias A (2018) Cadmium uptake kinetics in parts of the seagrass Cymodocea nodosa at high exposure concentrations. J Biol Res Thessalon 25(5):1–11.  https://doi.org/10.1186/s40709-018-0076-4 CrossRefGoogle Scholar
  37. Marin-Guirao L, Atucha AM, Barba JL, Lopez EM, Fernandez AJ (2005) Effects of mining wastes on a seagrass ecosystem: metal accumulation and bioavailability, seagrass dynamics and associated community structure. Mar Environ Res 60(3):317–337.  https://doi.org/10.1016/j.marenvres.2004.11.002 CrossRefGoogle Scholar
  38. Martinez-Oro D, Parraga-Aguado I, Querejeta JI, Conesa HM (2017) Importance of intra- and interspecific plant interactions for the phytomanagement of semiarid mine tailings using the tree species Pinus halepensis. Chemosphere 186:405–413.  https://doi.org/10.1016/j.chemosphere.2017.08.010 CrossRefGoogle Scholar
  39. Messaoudi I, Deli T, Kessabi K, Barhoumi S, Kerkeni A, Said K (2009) Association of spinal deformities with heavy metal bioaccumulation in natural populations of grass goby, Zosterisessor ophiocephalus Pallas, 1811 from the Gulf of Gabès (Tunisia). Environ Monit Assess 156:551–560.  https://doi.org/10.1007/s10661-008-0504-2 CrossRefGoogle Scholar
  40. Moldenhauer KM, Zielhofer C, Faust D (2008) Heavy metals as indicators for Holocene sediment provenance in a semi-arid Mediterranean catchment in northern Tunisia. Quat Int 189:129–134.  https://doi.org/10.1016/j.quaint.2007.09.006 CrossRefGoogle Scholar
  41. Müller G (1969) Index of geoaccumulation in sediments of the Rhine River. Geochem J 2:109–118Google Scholar
  42. Nicolaidou A, Nott JA (1998) Metals in sediment, seagrass and gastropods near a nickel smelter in Greece: possible interactions. Mar Pollut Bull 36(5):360–365.  https://doi.org/10.1016/S0025-326X(97)00195-1 CrossRefGoogle Scholar
  43. Orlando-Bonaca M, France J, Mavric B, Grego M, Lipej L, Flander-Putrle V, Sisko M, Falace A (2015) A new index (Mediskew) for the assessment of the Cymodocea nodosa (Ucria) Ascherson meadow’s status. Mar Environ Res 110:132–141.  https://doi.org/10.1016/j.marenvres.2015.08.009 CrossRefGoogle Scholar
  44. Oueslati W, Added A, Abdeljaouad S (2010) Evaluation of metal contamination in a changed sedimentary environment: Ghar El Melh Lagoon, Tunisia. Chem Speciat Bioavailab 22(4):227–240.  https://doi.org/10.3184/095422910X12893267432461 CrossRefGoogle Scholar
  45. Rabaoui L, Balti R, Zrelli S, Tlig-Zouari S (2014) Assessment of heavy metals pollution in the gulf of Gabès (Tunisia) using four mollusk species. Mediterr Mar Sci 15(1):45–58.  https://doi.org/10.12681/mms.504 CrossRefGoogle Scholar
  46. Ralph PJ, Tomasko D, Moore K, Seddon S, Macinnis-Ng CMO (2007) Human impacts on seagrasses: eutrophication sedimentation and contamination. In: Larkum AWD, Orth RJ, Duarte C (eds) Seagrasses: biology, ecology and conservation. Springer, Berlin, pp 567–593Google Scholar
  47. Ramírez F, Abdennadher A, Sanpera C, Jover L, Hobson KA, Wassenaar LI (2011) Tracing waterbird exposure to total mercury and selenium: a case study at the Solar Saltworks of Thyna (Sfax, Tunisia). Environ Sci Technol 45(12):5118–5124.  https://doi.org/10.1021/es200026w CrossRefGoogle Scholar
  48. Richir J, Gobert S (2014) A reassessment of the use of Posidonia oceanica and Mytillus galloprovincialis to biomonitor the coastal pollution of traces elements: new tools and tips. Mar Pollut Bull 89(1–2):390–406.  https://doi.org/10.1016/j.marpolbul.2014.08.030 CrossRefGoogle Scholar
  49. Richir J, Salivas-Decaux M, Lafabrie C, Lopez y Royo C, Gobert S, Pergent G, Pergent-Martini C (2015) Bioassessment of trace element contamination of Mediterranean coastal waters using the seagrass Posidonia oceanica. J Environ Manag 151:486–499.  https://doi.org/10.1016/j.jenvman.2014.11.015 CrossRefGoogle Scholar
  50. Rjeibi M, Metian M, Hajji T, Guyot T, Ben Chaouachi-Chekir R, Bustamante P (2014) Interspecific and geographical variations of trace metal concentrations in cephalopods from Tunisian waters. Environ Monit Assess 186(6):3767–3783.  https://doi.org/10.1007/s10661-014-3656-2 CrossRefGoogle Scholar
  51. Romero J, Lee KS, Pérez M, Mateo MA, Alcoverro T (2007) Nutrient dynamics in seagrass ecoystems. In: Lrakum AWD, Orth RJ, Duarte C (eds) Seagrasses: biology, ecology and conservation. Springer, Berlin, pp 227–254Google Scholar
  52. Sanchiz C, García-Carrascosa AM, Pastor A (2001) Relationships between sediment physico-chemical characteristics and heavy metal bioaccumulation in Mediterranean soft-bottom macrophytes. Aquat Bot 69:63–73.  https://doi.org/10.1016/S0304-3770(00)00120-0 CrossRefGoogle Scholar
  53. Sghaier YR, Zakhama-Sraieb R, Charfi-Cheikhrouhou F (2011) Primary production and biomass in a Cymodocea nodosa meadow in the Ghar El Melh lagoon. Bot Mar 54(4):411–418.  https://doi.org/10.1515/bot.2011.045 CrossRefGoogle Scholar
  54. Sghaier YR, Zakhama-Sraieb R, Charfi-Cheikhrouhou F (2012) Seasonal variation of Cymodocea nodosa in the Ghar El Mel lagoon (Tunisia), with reference to insolation, temperature and salinity effects. Bull Inst Natl Sci Tech Oceanogr Mer Salammbo 39:117–125Google Scholar
  55. Sghaier YR, Zakhama-Sraieb R, Charfi-Cheikhrouhou F (2014) Effects of the invasive seagrass Halophila stipulacea on the native seagrass Cymodocea nodosa. In Langar H, Bouafif C, Ouerhi A (eds). Proceedings of the 5th Mediterranean Symposium on Marine vegetation (Portoroz, Slovenia, 27–28 October 2014), UNEP/MAP-RAC/SPA. 167–171Google Scholar
  56. Sghaier YR, Zakhama-Sraieb R, Mouelhi S, Vaszquez M, Valle C, Romos-Espela AA, Astier JM, Verlaque M, Charfi-Cheikhrouhou F (2015) Review of marine macrophytes in Tunisia. Mediterr Mar Sci 17(1):109–123.  https://doi.org/10.12681/mms.1366 CrossRefGoogle Scholar
  57. Shili A, Trabelsi EB, Ben Maiez N (2002) Benthic macrophyte communities in the Ghar El Melh lagoon. J Cost Conservat 8:135–140. https://doi.org/10.1652/1400-0350(2002)008[0135:BMCITG]2.0.CO;2Google Scholar
  58. Sidi N, Aris AZ, Mohamet-Yusuf F, Looi LJ, Mokhtar NF (2018) Tape seagrass (Enhalus acoroides) as a bioindicator of trace metal contamination in Merambong shoal, Johor Strait, Malaysia. Mar Pollut Bull 2018:113–118.  https://doi.org/10.1016/j.marpolbul.2017.10.041 CrossRefGoogle Scholar
  59. Stafford NB, Bell SS (2006) Space competition between seagrass and Caulerpa prolifera (Forsskaal) Lamouroux following simulated disturbances in Lassing Park, FL. J Exp Mar Biol Ecol 333(1):49–57.  https://doi.org/10.1016/j.jembe.2005.11.025 CrossRefGoogle Scholar
  60. UNEP-MAP, UNESCO-IHP (2015) Main hydro(geo)logical characteristics, ecosystem services and drivers of change of 26 representative Mediterranean groundwater-related coastal wetlands. Strategic Partnership for the Mediterranean Sea Large Marine Ecosystem (MedPartnership), ParisGoogle Scholar
  61. Vikas M, Dwarakish GS (2015) Coastal pollution: a review. Aquat Procedia 4:381–388.  https://doi.org/10.1016/j.aqpro.2015.02.051 CrossRefGoogle Scholar
  62. Zaabar W, Charfi-Cheikhrouha F, Achouri MS (2017) Temporal variation and structure of macro-epifauna associated with macrophytes in the Bizerte lagoon (Tunisia, SW Mediterranean Sea). J Nat Hist 51(47–48):2827–2847.  https://doi.org/10.1080/00222933.2017.1394504 CrossRefGoogle Scholar
  63. Zaaboub N, Alvzs Martins MV, Dhib A, Bejaoui B, Galgoni F, El Bour M, Aleya L (2015) Accumulation of trace metals in sediments in a Mediterranean lagoon: usefulness of metal sediment fractionation and elutriate toxicity assessment. Environ Pollut 207:226–237.  https://doi.org/10.1016/j.envpol.2015.09.033 CrossRefGoogle Scholar
  64. Zakhama-Sraieb R, Sghaier YR, Ben Hmida A, Cappai G, Carucci A, Charfi-Cheikhrouha F (2016) Variation along the year of trace metal levels in the compartments of the seagrass Posidonia oceanica in Port El Kantaoui, Tunisia. Environ Sci Pollut Res 23(2):1681–1690.  https://doi.org/10.1007/s11356-015-5163-6 CrossRefGoogle Scholar
  65. Zakhama-Sraieb R, Sghaier YR, Ben Hmida A, Charfi-Cheikhrouha F (2018) Assessment of trace metals in marine Magnoliophyta in Port El Kantaoui (Sousse, Tunisia). In book: Recent advances in environmental science from the Euro-Mediterranean and surrounding regions  https://doi.org/10.1007/978-3-319-70548-4_115

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Sciences of Tunis, Faculty of Sciences of Tunis, Laboratory of Diversity, Management and Conservation of Biological Systems, LR18ES06University of Tunis El ManarTunisTunisia
  2. 2.High Institute of Biotechnology of Sidi ThabetUniversity of ManoubaSidi ThabetTunisia

Personalised recommendations